將直線方程代入拋物線方程.并整理得: 查看更多

 

題目列表(包括答案和解析)

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn)如下:

零件的個(gè)數(shù)(個(gè))

2

3

4

5

加工的時(shí)間(小時(shí))

2.5

3

4

4.5

(1)在給定坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求關(guān)于的線性回歸方程;

(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?

,

【解析】第一問中,利用表格中的數(shù)據(jù)先作出散點(diǎn)圖

第二問中,求解均值a,b的值,從而得到線性回歸方程。

第三問,利用回歸方程將x=10代入方程中,得到y(tǒng)的預(yù)測(cè)值。

解:(1)散點(diǎn)圖(略)   (2分)

(2) (4分)

         (7分)

        (8分)∴回歸直線方程:       (9分)

(3)當(dāng)∴預(yù)測(cè)加工10個(gè)零件需要8.05小時(shí)。

 

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以,

第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點(diǎn)為,又,得.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

查看答案和解析>>

從方程
x=2t
y=t-3
中消去t,此過程如下:
由x=2t得t=
x
2
,將t=
x
2
代入y=t-3中,得到y=
1
2
x-3

仿照上述方法,將方程
x=3cosα
y=2sinα
中的α消去,并說明它表示什么圖形,求出其焦點(diǎn).

查看答案和解析>>

小明家中有兩種酒杯,一種酒杯的軸截面是等腰直角三角形,稱之為直角酒杯,另一種酒杯的軸截面近似一條拋物線,杯口寬4 cm,杯深為8 cm,稱之為拋物線酒杯.

(1)請(qǐng)選擇適當(dāng)?shù)淖鴺?biāo)系,求出拋物線酒杯的方程.

(2)一次,小明在游戲中注意到一個(gè)現(xiàn)象,若將一些大小不等的玻璃球依次放入直角酒杯中,則任何玻璃球都不能觸及酒杯杯底.但若將這些玻璃球放入拋物線酒杯中,則有些小玻璃球能觸及酒杯杯底.小明想用所學(xué)數(shù)學(xué)知識(shí)研究一下,當(dāng)玻璃球的半徑r為多大值時(shí),玻璃球一定會(huì)觸及酒杯杯底.你能幫助小明解決這個(gè)問題嗎?

(3)在拋物線酒杯中,放入一根粗細(xì)均勻、長(zhǎng)度為2 cm的細(xì)棒,假設(shè)細(xì)棒的端點(diǎn)與酒杯壁之間的摩擦可以忽略不計(jì),那么當(dāng)細(xì)棒最后達(dá)到平衡狀態(tài)時(shí),細(xì)棒在酒杯中位置如何?

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊(cè)答案