解:(Ⅰ)在中. 且 查看更多

 

題目列表(包括答案和解析)

中,滿足,邊上的一點.

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若=m  (m為正常數(shù)) 且邊上的三等分點.,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數(shù)量積設向量與向量的夾角為,則

=,得,又,則為所求

第二問因為,=m所以

(1)當時,則= 

(2)當時,則=

第三問中,解:設,因為;

所以于是

從而

運用三角函數(shù)求解。

(Ⅰ)解:設向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因為,=m所以

(1)當時,則=;-2分

(2)當時,則=;--2分

(Ⅲ)解:設,因為;

所以于是

從而---2

==

=…………………………………2

,,則函數(shù),在遞減,在上遞增,所以從而當時,

 

查看答案和解析>>

中,,分別是角所對邊的長,,且

(1)求的面積;

(2)若,求角C.

【解析】第一問中,由又∵的面積為

第二問中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C為內角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面積為           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C為內角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

(Ⅰ)閱讀理解:
①對于任意正實數(shù)a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有當a=b時,等號成立.
②結論:在a+b≥2
ab
(a,b均為正實數(shù))中,若ab為定值p,則a+b≥2
p

只有當a=b時,a+b有最小值2
p

(Ⅱ)結論運用:根據(jù)上述內容,回答下列問題:(提示:在答題卡上作答)
①若m>0,只有當m=
 
時,m+
1
m
有最小值
 

②若m>1,只有當m=
 
時,2m+
8
m-1
有最小值
 

(Ⅲ)探索應用:
學校要建一個面積為392m2的長方形游泳池,并且在四周要修建出寬為2m和4m的小路(如圖).問游泳池的長和寬分別為多少米時,共占地面積最?并求出占地面積的最小值.
精英家教網

查看答案和解析>>

)在棱長為1的正方體中,分別是的中點,在棱上,且,H為的中點,應用空間向量方法求解下列問題.

(1)求證:;

(2)如圖建系,求EF與所成的角的余弦;

(3)求FH的長.

 

 

 

查看答案和解析>>

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網

C.(坐標系與參數(shù)方程選做題)直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標系,設點A,B分別在曲線C1
x=3+cos θ
y=4+sin θ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>


同步練習冊答案