(Ⅱ)∵第行的最后一個(gè)數(shù)是.第行共有個(gè)數(shù).且這些數(shù)構(gòu)成一個(gè)等差數(shù)列.設(shè)第行的第一個(gè)數(shù)是 -----5分 查看更多

 

題目列表(包括答案和解析)

一個(gè)總體共有60個(gè)個(gè)體,其編號(hào)為00,01,02,…,59,現(xiàn)從中抽取一個(gè)容量為10的樣本,請(qǐng)從隨機(jī)數(shù)表的第8行第6列的數(shù)字開始,向右讀,到最后一列后再從下一行的左邊開始,繼續(xù)向右讀,依次獲取樣本號(hào)碼,直到取滿樣本為止,則獲得的樣本號(hào)碼是___________.

附表:(第8行—第10行)

63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79

33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 100 13 42  99 66 02 79 54

57 60 86 32 44  09 47 27 96 54  49 17 46 09 62  90 52 84 77 27  08 02 73 43 28

查看答案和解析>>


如圖,第n行共有n個(gè)數(shù),且該行的第一個(gè)數(shù)和最后一個(gè)數(shù)都是n,中間任意一個(gè)數(shù)都等于第n-1行與之相鄰的兩個(gè)數(shù)的和,……(n=1,2,3…………)分別表示第n行的第一個(gè)數(shù),第二個(gè)數(shù),……第n個(gè)數(shù).則(n2且n)的表達(dá)式
A.
B.
C.
D.

查看答案和解析>>

(本題共2小題,第一小題4分,第二小題8分,共12分)

在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):① 每一行中的二項(xiàng)式系數(shù)是“對(duì)稱”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,;② 圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):

(1)試寫出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);

(2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

查看答案和解析>>

一支車隊(duì)有15輛車,某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù),第一輛車于下午2時(shí)出發(fā),第二輛車于下午2時(shí)10分出發(fā),第三輛車于下午2時(shí)20分出發(fā),依此類推。假設(shè)所有的司機(jī)都連續(xù)開車,并都在下午6時(shí)停下來休息。

(1)到下午6時(shí)最后一輛車行駛了多長時(shí)間?

(2)如果每輛車的行駛速度都是60,這個(gè)車隊(duì)當(dāng)天一共行駛了多少千米?

【解析】第一問中,利用第一輛車出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛

則第15輛車在小時(shí),最后一輛車出發(fā)時(shí)間為:小時(shí)

第15輛車行駛時(shí)間為:小時(shí)(1時(shí)40分)

第二問中,設(shè)每輛車行駛的時(shí)間為:,由題意得到

是以為首項(xiàng),為公差的等差數(shù)列

則行駛的總時(shí)間為:

則行駛的總里程為:運(yùn)用等差數(shù)列求和得到。

解:(1)第一輛車出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛

則第15輛車在小時(shí),最后一輛車出發(fā)時(shí)間為:小時(shí)

第15輛車行駛時(shí)間為:小時(shí)(1時(shí)40分)         ……5分

(2)設(shè)每輛車行駛的時(shí)間為:,由題意得到

是以為首項(xiàng),為公差的等差數(shù)列

則行駛的總時(shí)間為:    ……10分

則行駛的總里程為:

 

查看答案和解析>>


同步練習(xí)冊(cè)答案