(2)若的最大值為.解關(guān)于x的不等式. 查看更多

 

題目列表(包括答案和解析)

已知f(x)在x∈[a,b]上的最大值為M,最小值為m,給出下列五個命題:①若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,m];②若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,M];③若關(guān)于的方程p=f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];④若關(guān)于的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,m];⑤若關(guān)于的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];其中正確命題的個數(shù)為

[  ]

A.4

B.3

C.2

D.1

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對任意x,y∈R有f(x+y)=f(x)+f(y)-1,當x>0時,f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對任意x,y∈R有f(x+y)=f(x)+f(y)-1,當x>0時,f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對任意x,y∈R有f(x+y)=f(x)+f(y)-1,當x>0時,f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對任意x,y∈R有f(x+y)=f(x)+f(y)-1,當x>0時,f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實數(shù)a的取值范圍.

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意=1又a>0,所以a=1.

      (2)g(x)=,當時,,無遞增區(qū)間;當x<1時,,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當0<t≤10時,

是增函數(shù),且f(10)=240

當20<t≤40時,是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4  當20<t≤40時,令,則t≈28.57 

則學生注意力在180以上所持續(xù)的時間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因為……7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時,根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為

        f(x)=

        loga[2-(x-2k)],x∈[2k,2k+1].

        (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當x∈[0,1]時f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

        ∴[f(x)]max= f(0)= =,∴a=4.

        當x∈[-1,1]時,由f(x)>

            得

        f(x)是以2為周期的周期函數(shù),

        f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

        21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

        又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

        (2)∵g(x)==,D={x?x-1  }

        X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

         


        同步練習冊答案