題目列表(包括答案和解析)
直線截圓所得的弦長為
直線截圓所得弦長等于,則以、、為邊長的三角形一定是( ).
A.直角三角形 B.銳角三角形 C.鈍角三角形 D.不存在
直線截圓所得弦長等于4,則以|a|、|b|、|c|為邊長的確良三角形一定是( )
(A)直角三角形 (B)銳角三角形 (C)鈍角三角形 (D)不存在
直線截圓所得弦長等于4,則以|a|、|b|、|c|為邊長的確定三角形一定是 .
一、選擇題(每小題5分,滿分60分)
1
2
3
4
5
6
7
8
9
10
11
12
D
C
D
B
B
A
C
C
A
D
A
D
二、填空題(每小題4分,滿分16分)
13.-6 14. 15. 16.②③
三、解答題(第17、18、19、20、21題各12分,第22題14分,共74分)
17.(I)
(Ⅱ)
函數(shù)的值域?yàn)?sub>
18.解:(I)記“甲回答對這道題”、“乙回答對這道題”、“丙回答對這道題”分別為事件
、、,則,且有即
(Ⅱ)由(1)
則甲、乙、丙三人中恰有兩人回答對該題的概率為:
19.解:法一
(I)設(shè)是的中點(diǎn),連結(jié),
則四邊形為方形,,故,
即
又
平面
(Ⅱ)由(I)知平面,
又平面,,
取的中點(diǎn),連結(jié)又,
則,取的中點(diǎn),連結(jié)則
為二面角的平面角
連結(jié),在中,,
取的中點(diǎn),連結(jié),,在中,
二面角的余弦值為
法二:
(I)以為原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則
又因?yàn)?sub>
所以,平面
(Ⅱ)設(shè)為平面的一個法向量。
由得
取,則又,
設(shè)為平面的一個法向量,由,,
得取取
設(shè)與的夾角為,二面角為,顯然為銳角,
,即為所求
20.解:(I)或
故的單調(diào)遞增區(qū)間是和
單調(diào)遞減區(qū)間是(0,2)
(Ⅱ)
在和遞增,在(-1,3)遞減。
有三個相異實(shí)根
21.解:(I)設(shè)的公差為,則:
(Ⅱ)當(dāng)時,,由,得
當(dāng)時,,
,即
是以為首項(xiàng),為公比的等比數(shù)列。
(Ⅲ)由(Ⅱ)可知:
22.解:(I)設(shè)過與拋物線的相切的直線的斜率是,
則該切線的方程為:
由得
則都是方程的解,故
(Ⅱ)設(shè)
由于,故切線的方程是:
則
,同理
則直線的方程是,則直線過定點(diǎn)(0,2)
(Ⅲ)要使最小,就是使得到直線的距離最小,而到直線的距離
當(dāng)且僅當(dāng)即時取等號
設(shè)
由得,則
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com