題目列表(包括答案和解析)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)在,上的最大值、最小值;
(Ⅱ)令,若在,上單調(diào)遞增,求實(shí)數(shù) 的取值范圍.
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最小值和最大值;
(2)設(shè)的內(nèi)角的對應(yīng)邊分別為,且,若向量與向量共線,求的值.
一、選擇題:
1、D,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、D,10、D
二、填空題:
11、1.2; 12、 (2,+∞) ; 13、2.5 ; 14、①③④
三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
15、 ……(6分)
點(diǎn)在曲線上, ……(8分)
所求的切線方程為:,即 。 ……(12分)
16、解:(1)當(dāng)時(shí),
∴時(shí),的最小值為1;(3分)
時(shí),的最大值為37.(6分)
(2)函數(shù)圖象的對稱軸為,(8分)
∵在區(qū)間上是單調(diào)函數(shù),∴或(10分)
故的取值范圍是或.(12分)
17、解: (1)設(shè),(1分)由得,故.(3分)
∵,∴.(
即,(5分)所以,∴. ……………7分
(2)由題意得在[-1,1]上恒成立.(9分)即在[-1,1]上恒成立.(10分)
設(shè),其圖象的對稱軸為直線,所以 在[-1,1]上遞減.
故只需(12分),即,解得. ……………14分
18、
解:(1)可能取的值為0、1、2、4。 ……(2分)
且,,, ……(6分)
所求的分布列為:
0
1
2
4
……(8分)
(2)由(1)可知, ……(11分)
……(14分)
19、(1)設(shè)任意實(shí)數(shù),則
== ……………4分
.
又,∴,所以是增函數(shù). ……………7分
法二、導(dǎo)數(shù)法
(2)當(dāng)時(shí),,(9分)∴, ∴,(12分)
y=g(x)= log2(x+1). ………………………14分
20、解:(1) 設(shè)x > 0,則-x < 0,∴ f (-x) = 2a(-x) + = -2ax + .2分
而 f (x) 是奇函數(shù),
∴ f (x) = -f (-x) = 2ax- (x > 0). 4分
(2) 由(1),x > 0時(shí),f (x) = 2ax- ,∴ f /(x) = 2a + .6分
由 f./ (x) ≥ 0得a ≥ -.
而當(dāng)0 < x ≤ 1時(shí),(- )max = -1.∴ a > -1. 8分
(3) 由 f ¢ (x) = 2a + 知,
當(dāng)a ≥ 0時(shí),在 (0, + ¥) 上,f ¢ (x) 恒大于0,故 f (x) 無最大值; 10分
當(dāng)a < 0時(shí),令f ¢ (x) = 0 得 x = .
易得 f (x) 在 (0, + ¥) 的增減性如下表所示:
x
(0,)
(, + ¥)
f ¢ (x)
+
0
-
f (x)
遞增
極大
遞減
12分
令 f ( ) = 2a?-= -9,即 3 = 9,得a = ±3,
當(dāng)a = -3時(shí),x = >0,
∴ a = -3時(shí),在 (0, + ¥) 上有 f (x) max = f ( ) = -9.14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com