18.本小題主要考查正余弦定理的應用及三角恒等變換. 查看更多

 

題目列表(包括答案和解析)

中,內角A,B,C所對的分別是a,b,c。已知a=2,c=,cosA=.

(I)求sinC和b的值;

(II)求的值。

【考點定位】本小題主要考查同角三角函數(shù)的基本關系、二倍角的正弦與余弦公式、兩角和余弦公式以及正弦定理、余弦定理等基礎知識,考查基本運算求解能力.

 

查看答案和解析>>

在某校舉行的數(shù)學競賽中,全體參賽學生的競賽成績近似服從正態(tài)分布。已知成績在90分以上(含90分)的學生有12名。

(Ⅰ)、試問此次參賽學生總數(shù)約為多少人?

(Ⅱ)、若該校計劃獎勵競賽成績排在前50名的學生,試問設獎的分數(shù)線約為多少分?

可共查閱的(部分)標準正態(tài)分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

點評:本小題主要考查正態(tài)分布,對獨立事件的概念和標準正態(tài)分布的查閱,考查運用概率統(tǒng)計知識解決實際問題的能力。

查看答案和解析>>

已知是等差數(shù)列,其前n項和為是等比數(shù)列,且 

(I)求數(shù)列的通項公式;

(II)記求證:,。

【考點定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和等基礎知識.考查化歸與轉化的思想方法.考查運算能力、推理論證能力.

 

查看答案和解析>>

已知△的內角所對的邊分別為.

 (1) 若, 求的值;

(2) 若△的面積 求的值.

【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關系等基礎知識,考查運算求解能力。第一問中,得到正弦值,再結合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得,

 

查看答案和解析>>

(本小題滿分12分)

有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內的零件為一等品。

(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機抽取2個.

     (。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;

     (ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>


同步練習冊答案