∵ 正方形ABCD邊長為2 ∴ BG⊥AC.∵ BF⊥平面ACE 由三垂線定理逆定理得FG⊥AC∴ ∠BGF是二面角B―AC―E的平面角由(1)AE⊥平面BCE ∴ AE⊥EB 查看更多

 

題目列表(包括答案和解析)

如圖:設(shè)一正方形ABCD邊長為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線折起,使A、B、C、D四點(diǎn)重合,記為A點(diǎn).恰好能做成一個(gè)正四棱錐(粘貼損耗不計(jì)),圖中AH⊥PQ,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長都相等,求這個(gè)正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.

查看答案和解析>>

正方形ABCD邊長為2,E,F(xiàn)分別是AB和CD的中點(diǎn),將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點(diǎn),如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為
1
2
,那么點(diǎn)M到直線EF的距離為( 。

查看答案和解析>>

已知正方形ABCD邊長為2,在正方形ABCD內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P滿足|PA|≤1的概率是( 。

查看答案和解析>>

正方形ABCD邊長為2,E、F分別是ABCD的中點(diǎn),將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點(diǎn),如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點(diǎn)M到直線EF的距離為(    )

A.     B. 1      C.        D.

查看答案和解析>>

正方形ABCD邊長為2,E,F(xiàn)分別是AB和CD的中點(diǎn),將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點(diǎn),如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為
1
2
,那么點(diǎn)M到直線EF的距離為( 。
A.
2
2
B.1C.
3
2
D.
1
2
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案