故電子從P點出發(fā)第一次回到P點所用時間----⑩評分標準:①②④⑥式各3分.⑧式2分.③⑤⑦⑨⑩式各1分. 查看更多

 

題目列表(包括答案和解析)

 【選做題】本題包括A、B、C三小題,請選定其中兩題,并在答題卡相應的答題區(qū)域內作答.若三題都做,則按A、B兩題評分.

A.(選修模塊3—3)(12分)

(1)(4分)判斷以下說法的正誤,在相應的括號內打“√”或“×”。

  (A)用手捏面包,面包體積會縮小,說明分子之間有間隙。(   )

  (B)溫度相同的氫氣和氧氣,氫氣分子和氧氣分子的平均速率相同。(   )

  (C)夏天荷葉上小水珠呈球狀,是由于液體表面張力使其表面積具有收縮到最小趨勢的緣故。(    )

  (D)自然界中進行的一切與熱現象有關的宏觀過程都具有方向性。(   )

(2)(4分)在“用油膜法估測分子的大小”的實驗中,有下列操作步驟,請補充實驗步驟的內容及實驗步驟中的計算式:

  (A)用滴管將濃度為的油酸酒精溶液逐滴滴入量筒,記下的油酸酒精溶液的滴數;

  (B)將痱子粉末均勻地撒在淺盤內的水面上,用滴管吸取濃度為的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足夠大,且不與器壁接觸為止,記下滴入的滴數;

  (C)________________________________;

  (D)將畫有油酸薄膜輪廓的玻璃板放在坐標紙上,以坐標紙上邊長的正方形為單位,計算輪廓內正方形的個數

  (E)用上述測量的物理量可以估算出單個油酸分子的直徑______。

(3)如圖所示,上端開口的光滑圓柱形氣缸豎直放置,截面積為40cm2的活塞將

一定質量的氣體和一形狀不規(guī)則的固體A封閉在氣缸內。在氣缸內距缸底60cm   

處設有卡環(huán)ab,使活塞只能向上滑動。開始時活塞擱在ab上,缸內氣體的壓

強等于大氣壓強為p0=1.0×105Pa,溫度為300K。現緩慢加熱汽缸內氣體,當

溫度緩慢升高為330K,活塞恰好離開ab;當溫度緩慢升高為360K時,活塞上

升了4cm。求:

(1)活塞的質量;

(2)整個過程中氣體對外界做的功。

B.(選修模塊3—4)(12分)

(1)(4分)判斷以下說法的正誤,在相應的括號內打“√”或“×”。

   (A)光速不變原理是狹義相對論的兩個基本假設之一。(     )

   (B)拍攝玻璃櫥窗內的物品時,往往在鏡頭前加一個偏振片以增加透射光的強度。(      )

   (C)光在介質中的速度大于光在真空中的速度。(     )

(D)變化的電場一定產生變化的磁場;變化的磁場一定產生變化的電場。(     )

   

(2)(4分)如圖為一橫波發(fā)生器的顯示屏,可以顯示出波由0點從左向右傳播的圖像,屏上每一小格長度為1cm。在t=0時刻橫波發(fā)生器上能顯示的波形如圖所示。因為顯示屏的局部故障,造成從水平位置A到B之間(不包括A、B兩處)的波形無法被觀察到(故障不影響波在發(fā)生器內傳播)。此后的時間內,觀察者看到波形相繼傳經B、C處,在t=5秒時,觀察者看到C處恰好第三次(從C開始振動后算起)出現平衡位置,則該波的波速可能是

(A)3.6cm/s    (B)4.8cm/s

(C)6cm/s     (D)7.2cm/s

 

 

 

(3)(4分)如圖所示,某同學用插針法測定一半圓形玻璃磚的折射率。在平鋪的白紙上垂直紙面插大頭針、確定入射光線,并讓入射光線過圓心,在玻璃磚(圖中實線部分)另一側垂直紙面插大頭針,使擋住、的像,連接。圖中為分界面,虛線半圓與玻璃磚對稱,分別是入射光線、折射光線與圓的交點,、均垂直于法線并分別交法線于、點。設的長度為,的長度為的長度為,的長度為,求:

①為較方便地表示出玻璃磚的折射率,需用刻度尺測量(用上述給  

出量的字母表示),

②玻璃磚的折射率

 

 

C.(選修模塊3—5)(12分)

(1)下列說法中正確的是________

(A)X射線是處于激發(fā)態(tài)的原子核輻射出的

(B)放射性元素發(fā)生一次β衰變,原子序數增加1

(C)光電效應揭示了光具有粒子性,康普頓效應揭示了光具有波動性

(D)原子核的半衰期不僅與核內部自身因素有關,還與原子所處的化學狀態(tài) 

有關

(2)氫原子的能級如圖所示,當氫原子從n=4向n=2的能級躍遷時,輻射的光  

子照射在某金屬上,剛好能發(fā)生光電效應,則該金屬的逸出功為 ▲  eV。

現有一群處于n=5的能級的氫原子向低能級躍遷,在輻射出的各種頻率的

光子中,能使該金屬發(fā)生光電效應的頻率共有  ▲    種。

 

(3)如圖,質量為m的小球系于長L=0.8m的輕繩末端。繩的另一端

系于O點。將小球移到輕繩水平位置后釋放,小球擺到最低點A

時,恰與原靜止于水平面上的物塊P相碰。碰后小球回擺,上升的

最高點為BA、B的高度差為h=0.2m。已知P的質量為M=3m,

P與水平面間的動摩擦因數為μ=0.25,小球與P的相互作用時間

極短。求P沿水平面滑行的距離。

 

 

查看答案和解析>>

 【選做題】本題包括A、B、C三小題,請選定其中兩題,并在答題卡相應的答題區(qū)域內作答.若三題都做,則按A、B兩題評分.

A.(選修模塊3—3)(12分)

(1)(4分)判斷以下說法的正誤,在相應的括號內打“√”或“×”。

  (A)用手捏面包,面包體積會縮小,說明分子之間有間隙。(    )

  (B)溫度相同的氫氣和氧氣,氫氣分子和氧氣分子的平均速率相同。(    )

  (C)夏天荷葉上小水珠呈球狀,是由于液體表面張力使其表面積具有收縮到最小趨勢的緣故。(    )

  (D)自然界中進行的一切與熱現象有關的宏觀過程都具有方向性。(    )

(2)(4分)在“用油膜法估測分子的大小”的實驗中,有下列操作步驟,請補充實驗步驟的內容及實驗步驟中的計算式:

  (A)用滴管將濃度為的油酸酒精溶液逐滴滴入量筒,記下的油酸酒精溶液的滴數;

  (B)將痱子粉末均勻地撒在淺盤內的水面上,用滴管吸取濃度為的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足夠大,且不與器壁接觸為止,記下滴入的滴數;

  (C)________________________________;

  (D)將畫有油酸薄膜輪廓的玻璃板放在坐標紙上,以坐標紙上邊長的正方形為單位,計算輪廓內正方形的個數

  (E)用上述測量的物理量可以估算出單個油酸分子的直徑______。

(3)如圖所示,上端開口的光滑圓柱形氣缸豎直放置,截面積為40cm2的活塞將

一定質量的氣體和一形狀不規(guī)則的固體A封閉在氣缸內。在氣缸內距缸底60cm   

處設有卡環(huán)ab,使活塞只能向上滑動。開始時活塞擱在ab上,缸內氣體的壓

強等于大氣壓強為p0=1.0×105Pa,溫度為300K,F緩慢加熱汽缸內氣體,當

溫度緩慢升高為330K,活塞恰好離開ab;當溫度緩慢升高為360K時,活塞上

升了4cm。求:

(1)活塞的質量;

(2)整個過程中氣體對外界做的功。

B.(選修模塊3—4)(12分)

(1)(4分)判斷以下說法的正誤,在相應的括號內打“√”或“×”。

   (A)光速不變原理是狹義相對論的兩個基本假設之一。(      )

   (B)拍攝玻璃櫥窗內的物品時,往往在鏡頭前加一個偏振片以增加透射光的強度。(      )

   (C)光在介質中的速度大于光在真空中的速度。(      )

(D)變化的電場一定產生變化的磁場;變化的磁場一定產生變化的電場。(      )

   

(2)(4分)如圖為一橫波發(fā)生器的顯示屏,可以顯示出波由0點從左向右傳播的圖像,屏上每一小格長度為1cm。在t=0時刻橫波發(fā)生器上能顯示的波形如圖所示。因為顯示屏的局部故障,造成從水平位置A到B之間(不包括A、B兩處)的波形無法被觀察到(故障不影響波在發(fā)生器內傳播)。此后的時間內,觀察者看到波形相繼傳經B、C處,在t=5秒時,觀察者看到C處恰好第三次(從C開始振動后算起)出現平衡位置,則該波的波速可能是

(A)3.6cm/s    (B)4.8cm/s

(C)6cm/s     (D)7.2cm/s

 

 

 

(3)(4分)如圖所示,某同學用插針法測定一半圓形玻璃磚的折射率。在平鋪的白紙上垂直紙面插大頭針確定入射光線,并讓入射光線過圓心,在玻璃磚(圖中實線部分)另一側垂直紙面插大頭針,使擋住的像,連接。圖中為分界面,虛線半圓與玻璃磚對稱,、分別是入射光線、折射光線與圓的交點,、均垂直于法線并分別交法線于、點。設的長度為的長度為,的長度為,的長度為,求:

①為較方便地表示出玻璃磚的折射率,需用刻度尺測量(用上述給  

出量的字母表示),

②玻璃磚的折射率

 

 

C.(選修模塊3—5)(12分)

(1)下列說法中正確的是________

(A)X射線是處于激發(fā)態(tài)的原子核輻射出的

(B)放射性元素發(fā)生一次β衰變,原子序數增加1

(C)光電效應揭示了光具有粒子性,康普頓效應揭示了光具有波動性

(D)原子核的半衰期不僅與核內部自身因素有關,還與原子所處的化學狀態(tài) 

有關

(2)氫原子的能級如圖所示,當氫原子從n=4向n=2的能級躍遷時,輻射的光  

子照射在某金屬上,剛好能發(fā)生光電效應,則該金屬的逸出功為 ▲  eV。

現有一群處于n=5的能級的氫原子向低能級躍遷,在輻射出的各種頻率的

光子中,能使該金屬發(fā)生光電效應的頻率共有   ▲    種。

 

(3)如圖,質量為m的小球系于長L=0.8m的輕繩末端。繩的另一端

系于O點。將小球移到輕繩水平位置后釋放,小球擺到最低點A

時,恰與原靜止于水平面上的物塊P相碰。碰后小球回擺,上升的

最高點為B,AB的高度差為h=0.2m。已知P的質量為M=3m

P與水平面間的動摩擦因數為μ=0.25,小球與P的相互作用時間

極短。求P沿水平面滑行的距離。

 

 

查看答案和解析>>

第九部分 穩(wěn)恒電流

第一講 基本知識介紹

第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質導電的情形有什么區(qū)別。

應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內容,但近幾年的考試已經很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯,也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯或混聯,但不能包含電源。

二、復雜電路的計算

1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網絡,可以用一個電壓源和電阻串聯的二端網絡來等效。(事實上,也可等效為“電流源和電阻并聯的的二端網絡”——這就成了諾頓定理。)

應用方法:其等效電路的電壓源的電動勢等于網絡的開路電壓,其串聯電阻等于從端鈕看進去該網絡中所有獨立源為零值時的等效電阻。

2、基爾霍夫(克希科夫)定律

a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強度的總和,等于從該點流出的電流強度的總和。

例如,在圖8-2中,針對節(jié)點P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現。

對于基爾霍夫第一定律的理解,近來已經拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中

☆同學們可以證明Δ→ Y的結論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復雜一些,但我們仍然可以得到

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉變?yōu)殡娔艿难b置。如發(fā)電機、電池等。發(fā)電機是將機械能轉變?yōu)殡娔;干電池、蓄電池是將化學能轉變?yōu)殡娔;光電池是將光能轉變?yōu)殡娔埽辉与姵厥菍⒃雍朔派淠苻D變?yōu)殡娔;在電子設備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動勢定義為電源的開路電壓,內阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據此不難推出相同電源串聯、并聯,甚至不同電源串聯、并聯的時的電動勢和內阻的值。

例如,電動勢、內阻分別為ε1 、r1和ε2 、r2的電源并聯,構成的新電源的電動勢ε和內阻r分別為(☆師生共同推導…)

ε = 

r = 

2、電功、電功率

電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內電場力所作的功叫做電功率P 。

計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。

對非純電阻電路,電功和電熱的關系依據能量守恒定律求解。 

四、物質的導電性

在不同的物質中,電荷定向移動形成電流的規(guī)律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。

2、液體導電

能夠導電的液體叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

在電解液中加電場時,在兩個電極上(或電極旁)同時產生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質。

液體導電遵從法拉第電解定律——

法拉第電解第一定律:電解時在電極上析出或溶解的物質的質量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質量為m的物質所需要的電量;K為電化當量,電化當量的數值隨著被析出的物質種類而不同,某種物質的電化當量在數值上等于通過1C電量時析出的該種物質的質量,其單位為kg/C。)

法拉第電解第二定律:物質的電化當量K和它的化學當量成正比。某種物質的化學當量是該物質的摩爾質量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數,對任何物質都相同,F = 9.65×104C/mol 。

將兩個定律聯立可得:m = Q 。

3、氣體導電

氣體導電是很不容易的,它的前提是氣體中必須出現可以定向移動的離子或電子。按照“載流子”出現方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內,通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內出現了大量的電子和正離子,電流亦迅速增大。這種現象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導現象

據金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現象。電阻率為零時對應的溫度稱為臨界溫度。超導現象首先是荷蘭物理學家昂尼斯發(fā)現的。

超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產業(yè)化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經超過100K,當然,這個溫度距產業(yè)化的期望值還很遠。

5、半導體

半導體的電阻率界于導體和絕緣體之間,且ρ

查看答案和解析>>

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。

一、簡諧運動

1、簡諧運動定義:= -k             

凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運動的方程

回避高等數學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。

依據:x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關名詞:(ωt +φ)稱相位,φ稱初相。

運動學參量的相互關系:= -ω2

A = 

tgφ= -

3、簡諧運動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經構成了質點在二維空間運動的軌跡參數方程,消去參數t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;

當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;

當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現象。

4、簡諧運動的周期

由②式得:ω=  ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運動的能量

一個做簡諧運動的振子的能量由動能和勢能構成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復力系數)k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機械波

1、波的產生和傳播

產生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)

2、機械波的描述

a、波動圖象。和振動圖象的聯系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復變函數。對任意一個時刻t ,都有一個y(x)的正弦函數,在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。

當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點便出現兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據前面已經做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點和高考要求相同。

5、多普勒效應

當波源或者接受者相對與波的傳播介質運動時,接收者會發(fā)現波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質的傳播速度v是恒定不變的)——

a、只有接收者相對介質運動(如圖3所示)

設接收者以速度v1正對靜止的波源運動。

如果接收者靜止在A點,他單位時間接收的波的個數為f ,

當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、

在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波

n = 

顯然,在單位時間內,接收者接收到的總的波的數目為:f + n = f ,這就是接收者發(fā)現的頻率f。即

f

顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質運動(如圖4所示)

設波源以速度v2正對靜止的接收者運動。

如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ 

在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當v2背離接收者,或有一定夾角的討論,類似a情形。

c、當接收者和波源均相對傳播介質運動

當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運動的證明與周期計算

物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。

模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數k就有了,求周期就是順理成章的事。

本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…

答案:木板運動周期為2π 。

鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動,F觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運動的定義式。

答案:松鼠做簡諧運動。

評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運動

1、彈簧振子

物理情形:如圖8所示,用彈性系數為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ

查看答案和解析>>


同步練習冊答案