15.解:(1)方程可化為.當時., 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問中利用導數(shù)在在處取到極值點可知導數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。

第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉化為存在實數(shù),使對任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,則.

,則,因為,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

時,有,當時,有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來源:]

所以當時,恒有;當時,恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

根據已知條件求曲線方程的一般步驟:

(1)________:________坐標系中,用有序實數(shù)對(x,y)表示所求曲線上________M的坐標;

(2)________:尋找并寫出適合題意條件p的________的集合________;

(3)________:________,列出方程f(x,y)=0;

(4)________:化方程f(x,y)=0為最簡式;

(5)________:證明以化簡后的方程的解為坐標的點________.

一般情況下,當化簡前后方程的解是________,步驟(5)可以省略不寫,若有特殊情況如增根、失根時,可適當予以說明.另外,根據情況,也可省略________,直接列出________.

查看答案和解析>>

某廠在一個空間容積為2000m3的密封車間內生產某種化學藥品.開始生產后,每滿60分鐘會一次性釋放出有害氣體am3,并迅速擴散到空氣中.每次釋放有害氣體后,車間內的凈化設備隨即自動工作20分鐘,將有害氣體的含量降至該車間內原有有害氣體含量的r%,然后停止工作,待下一次有害氣體釋放后再繼續(xù)工作.安全生產條例規(guī)定:只有當車間內的有害氣體總量不超過1.25am3時才能正常進行生產.

(Ⅰ)當r=20時,該車間能否連續(xù)正常生產6.5小時?請說明理由;

(Ⅱ)能否找到一個大于20的數(shù)據r,使該車間能連續(xù)正常生產6.5小時?請說明理由;

(Ⅲ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)

已知該凈化設備的工作方式是:在向外釋放出室內混合氣體(空氣和有害氣體)的同時向室內放入等體積的新鮮空氣.已知該凈化設備的換氣量是200m3/分,試證明該設備連續(xù)工作20分鐘能夠將有害氣體含量降至原有有害氣體含量的20%以下.(提示:我們可以將凈化過程劃分成n次,且n趨向于無窮大.)

查看答案和解析>>


同步練習冊答案