題目列表(包括答案和解析)
已知函數(shù)y=f(x)對于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)利用函數(shù)y=f(x)構造一個數(shù)列,方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構造數(shù)列的過程就停止.
(ⅰ)如果可以用上述方法構造出一個常數(shù)列,求a的取值范圍;
(ⅱ)是否存在一個實數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構造出一個無窮數(shù)列{xn}?若存在,求出a的值;若不存在,請說明理由;
(ⅲ)當a=1時,若x1=-1,求數(shù)列{xn}的通項公式.
已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a、b∈R都滿足f(a·b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結論;
(3)若Sn表示數(shù)列{bn}的前n項和.試問:是否存在關于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)對于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.
定義在D上的函數(shù)f(x),如果滿足:對于任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a·()x+()x;
(1)當a=1時,求函數(shù)f(x)在(-∞,0)上的值域.并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
(3)試定義函數(shù)的下界,舉一個下界為3的函數(shù)模型,并進行證明.
已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x.
(Ⅰ)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(Ⅱ)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由;
(Ⅲ)
給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,my2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中總能使得F(x1)-f(x2)=(x0)(x1-x2)成立,則稱函數(shù)具備性質“L”,試判斷函數(shù)f(x)是不是具備性質“L”,并說明理由.已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結合構造函數(shù)和導數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com