則不等式的解集為 . 查看更多

 

題目列表(包括答案和解析)

設(shè)關(guān)于x的不等式|x|+|x-1|<a(a∈R).若a=2,則不等式的解集為
 
;若不等式的解集為∅,則a的取值范圍是
 

查看答案和解析>>

已知定義在R上的減函數(shù)的圖像經(jīng)過點、,若函數(shù)的反函數(shù)為),則不等式的解集為               

 

查看答案和解析>>

(天津卷文8)已知函數(shù)則不等式的解集為(    )

A.               B.                C.              D.

查看答案和解析>>

已知函數(shù) 是偶函數(shù),是奇函數(shù),它們的定義域為,且它們在

上的圖象如右圖所示,則不等式的解集為

A.       B. 

C.       D.

 

查看答案和解析>>

設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為                     .

 

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由題意,有,

.…………………………5分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)設(shè)數(shù)列的公比為,由.             …………………………………………………………… 4分

∴數(shù)列的通項公式為.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中點,連接.

分別是梯形的中位線

,又

∴面,又

.……………………… 7分

(II)由三視圖知,是等腰直角三角形,

     連接

     在面AC1上的射影就是,∴

     ,

∴當(dāng)的中點時,與平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由題意:.

為點M的軌跡方程.     ………………………………………… 4分

(Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

    ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程為,求得.  ………………………… 9分

.  ……………………………… 13分

當(dāng)且僅當(dāng)時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

22. 解:(Ⅰ),由題意得

所以                    ………………………………………………… 4分

(Ⅱ)證明:令,

得:,……………………………………………… 7分

(1)當(dāng)時,,在,即上單調(diào)遞增,此時.

          …………………………………………………………… 10分

(2)當(dāng)時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

.                        …………………………………………14分

由 (1) 、(2)得 .

∴綜上所述,對于,使得成立. ………………15分

 


同步練習(xí)冊答案
  • <wbr id="f6q8m"><menuitem id="f6q8m"><optgroup id="f6q8m"></optgroup></menuitem></wbr>
    <tr id="f6q8m"></tr>