題目列表(包括答案和解析)
①點(diǎn)E到平面ABC1D1的距離為;②直線BC與平面ABC1D1所成的角等于45°;③空間四邊形ABCD1在正方體六個(gè)面內(nèi)射影的面積的最小值為;④BE與CD1所成的角為arcsin.
其中真命題的編號是 (寫出所有真命題的編號).?
①點(diǎn)E到平面ABC1D1的距離為;
②直線BC與平面ABC1D1所成的角等于45°;
③空間四邊形ABCD1在正方體六個(gè)面內(nèi)的射影圍成的圖形中,面積最小的值為;
④BE與CD1所成角為arcsin;
⑤二面角ABD1C的大小為.
其中真命題是.(寫出所有真命題的序號)
正方體ABCD―A1B1C1D1的棱長為1,E為A1B1的中點(diǎn),則下列五個(gè)命題:
①點(diǎn)E到平面ABC1D1的距離為 ②直線BC與平面ABC1D1所成的角等于45°;
③AE與DC1所成的角為; ④二面角A-BD1-C的大小為.其中真命題是 .(寫出所有真命題的序號)
正方體ABCD—A1B1C1D1的棱長為1,E、F、G分別為棱AA1、CC1、A1B1的中點(diǎn),則下列幾個(gè)命題:
①在空間中與三條直線A1D1,EF,CD都相交的直線有無數(shù)條;
②點(diǎn)G到平面ABC1D1的距離為
③直線AA1與平面ABC1D1所成的角等于45°;
④空間四邊形ABCD1在正方體六個(gè)面內(nèi)形成六個(gè)射影,其面積的最小值是
⑤直線A1C1與直線AG所成角的余弦值為;
⑥若一直線PQ既垂直于A1D,又垂直于AC,則直線PQ與BD1是垂直不相交的關(guān)系.
其中真命題是 .(寫出所有真命題的序號)
A. B. C. D.
一.選擇
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
B
B
A
C
A
D
B
C
B
A
B
二.填空
13. 14. 0 15.100 16. ②③④
三。解答題
17.(滿分10分)
(1) ,∴,∴
(5分)
(2)
,∴f(x)的值域?yàn)?sub> (10分)
18.解:(1)拿每個(gè)球的概率均為,兩球標(biāo)號的和是3的倍數(shù)有下列4種情況:
(1,2),(1,5),(2,4),(3,6)每種情況的概率為:
所以所求概率為: (6分)
(2)設(shè)拿出球的號碼是3的倍數(shù)的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。
,, (12分)
19 (滿分12分)
解法一:(Ⅰ)取BC中點(diǎn)O,連結(jié)AO.
為正三角形,.……3分
連結(jié),在正方形中,分別為的中點(diǎn),
由正方形性質(zhì)知,.………5分
又在正方形中,,
平面.……6分
(Ⅱ)設(shè)AB1與A1B交于點(diǎn),在平面1BD中,
作于,連結(jié),由(Ⅰ)得.
為二面角的平面角.………9分
在中,由等面積法可求得,………10分
又,.
所以二面角的大小為.……12分
解法二:(Ⅰ)取中點(diǎn),連結(jié).取中點(diǎn),以為原點(diǎn),如圖建立空間直角坐標(biāo)系,則
……3分
,.
平面.………6分
(Ⅱ)設(shè)平面的法向量為..
令得為平面的一個(gè)法向量.……9分
由(Ⅰ)為平面的法向量.……10分
.
所以二面角的大小為.……12分
20.(滿分12分)解:(I),
① …2分
,
又
即, ② …4分
③ … 6分
聯(lián)立方程①②③,解得 … 7分
(II)
… 9分
令
x
(-∞,-3)
-3
(-3,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
極大
極小
故h(x)的單調(diào)增區(qū)間為(-∞,-3),(1,+∞),單調(diào)減區(qū)間為(-3,1)
21.(滿分12分)
解:(1)∵,∴.
∴().
∴().
∴().
∴(). …3分
∴數(shù)列等比,公比,首項(xiàng),
而,且,∴.
∴.
∴. …6分
(2)
.
, ①
∴2. ②
①-②得 -,
, …9分
∴. …12分
22.(滿分12分)
解:⑴設(shè)Q(x0,0),由F(-c,0)
A(0,b)知
…2分
設(shè),得 …4分
因?yàn)辄c(diǎn)P在橢圓上,所以 …6分
整理得2b2=
⑵由⑴知,
于是F(-a,0), Q
△AQF的外接圓圓心為(a,0),半徑r=|FQ|=a …10分
所以,解得a=2,∴c=1,b=,所求橢圓方程為 …12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com