題目列表(包括答案和解析)
(08年安徽皖南八校聯(lián)考)(本小題滿分14分)
如圖所示,邊長為2的等邊△所在的平面垂直于矩形所在的平面,,為的中點.
(1)證明:⊥;
(2)求二面角的大小;
(3)求點到平面的距離.
(本小題滿分12分)
如圖,在正三棱柱.
(I)若,求點到平面的距離;
(Ⅱ)當為何值時,二面角的正弦值為?
在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,,、分別為、的中點.
(1)求二面角的余弦值;
(2)求點到平面的距離.
(文)(本小題8分)
如圖,在四棱錐中,平面,,,,
(1)求證:;
(2)求點到平面的距離
證明:(1)平面,
又
平面 (4分)
(2)設(shè)點到平面的距離為,
,,
求得即點到平面的距離為 (8分)
(其它方法可參照上述評分標準給分)
如圖,正三棱柱中,是的中點,.
(1)求證:;
(2)求點到平面的距離;
(3)判斷與平面的位置關(guān)系,并證明你的結(jié)論.
一、選擇題(60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
D
C
B
(C
D
D
A
B
C
B
二、填空題(20分)
13. 15 14.5 15. 16.
三、解答題(70分)
17.(1) ,∴,∴
(5分)
(2)
∵,∴,∴
∴ (理10分)
18. (1)記“甲恰好投進兩球”為事件A,則 (6分)
(2)記“甲比乙多投進兩球”,其中“恰好甲投進兩球且乙未投進”為事件,“恰好甲投進三球且乙投進一球”為事件,根據(jù)提議,、互斥,(理12分)
19.(1) (6分)
(2) (文12分)
(3) (理12分)
20.(1)設(shè)數(shù)列的公比為,則
∴
則 (文6分,理4分)
(2)由(1)可知
所以數(shù)列是一個以為首項,1為公差的等差數(shù)列
∴ (文12分,理8分)
(3)∵
∴當時,,即
當時,,即
綜上可知:時,;時, (理12分)
21. ⑴由已知
所求雙曲線C的方程為;
⑵設(shè)P點的坐標為,M,N的縱坐標分別為.
共線
同理
22.
(1)由題意得:
∴在上;在上;在上
在此在處取得極小值
∴①
②
③
由①②③聯(lián)立得:
∴ (6分)
(2)設(shè)切點Q
過
令,
求得:,方程有三個根。
需:
故:
因此所求實數(shù)的取值范圍為: (理12
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com