19. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分)

已知函數(shù),

(1)當(dāng)時(shí),求的最大值和最小值

(2)若上是單調(diào)函數(shù),且,求的取值范圍

 

查看答案和解析>>

(本題滿分12分)   已知函數(shù)

   (Ⅰ)當(dāng)的 單調(diào)區(qū)間;

   (Ⅱ)當(dāng)的取值范圍。

查看答案和解析>>

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an

(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意nÎN+bn<成立. 若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

設(shè)g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對(duì)任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設(shè)的中點(diǎn),連結(jié),則四邊形為正方形,

.故,,,即

學(xué)科網(wǎng)(Zxxk.Com),

平面,                                   

(II)由(I)知平面,

平面,

的中點(diǎn), 連結(jié),又,則

的中點(diǎn),連結(jié),則,.

為二面角的平面角.

連結(jié),在中,,,

的中點(diǎn),連結(jié),,

中,,

二面角的余弦值為

解法二:

(I)以為原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,.

學(xué)科網(wǎng)(Zxxk.Com),,

又因?yàn)?sub> 所以,平面.

(II)設(shè)為平面的一個(gè)法向量.

,,

    取,則

,,設(shè)為平面的一個(gè)法向量,

,得,則

設(shè)的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當(dāng)時(shí), 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以, 當(dāng)時(shí),函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個(gè)根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即

,得

∵直線與橢圓交于不同的兩點(diǎn)設(shè)

,

       ∴,

設(shè),則,

上單調(diào)遞增          ∴.

 

 

 


同步練習(xí)冊(cè)答案