(II)當.且滿足時.求弦長的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本題滿分13分)已知是橢圓的兩個焦點,為坐標原點,點在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點

   (1)求橢圓的標準方程;

   (2)當,且滿足時,求弦長的取值范圍.

 

查看答案和解析>>

已知橢圓(a>b>0)的一個焦點與拋物線y2=4x的焦點重合,且截拋物線的準線所得弦長為,直線l:y=kx+m交橢圓于不同的兩點A,B,且l總與以原點為圓心的單位圓相切.
(I)求該橢圓的方程;
(II)當且滿足時,求S△AOB的取值范圍.

查看答案和解析>>

(2013•臨沂二模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b≥1)
的離心率為
3
2
,且橢圓C上一點N到點Q(0,3)的距離最大值為4,過點M(3,0)的直線交橢圓C于點A、B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(O為坐標原點),當|AB|<
3
時,求實數(shù)t的取值范圍.

查看答案和解析>>

已知橢圓過定點A(1,0),且焦點在x軸上,橢圓與曲線|y|=x的交點為B、C,F(xiàn)有以A為焦點,過點B、C且開口向左的拋物線,拋物線的頂點坐標為M(m,0)。當橢圓的離心率e滿足時,求實數(shù)m的取值范圍。

查看答案和解析>>

已知F1,F(xiàn)2是橢圓+=1(a>b>0)的兩個焦點,O為坐標原點,點P(-1,)在橢圓上,且=0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點A,B
(1)求橢圓的標準方程;
(2)當=λ,且滿足≤λ≤時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設的中點,連結,則四邊形為正方形,

.故,,,即

學科網(wǎng)(Zxxk.Com)

平面,                                   

(II)由(I)知平面

平面,,

的中點, 連結,又,則

的中點,連結,則,.

為二面角的平面角.

連結,在中,,

的中點,連結,

中,,

二面角的余弦值為

解法二:

(I)以為原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,.

學科網(wǎng)(Zxxk.Com),

又因為 所以,平面.

(II)設為平面的一個法向量.

,

    取,則

,設為平面的一個法向量,

,,得,則

的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當時, 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以,時,函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知,

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即,

,得

∵直線與橢圓交于不同的兩點

,

       ∴,

,則,

上單調(diào)遞增          ∴.

 

 

 


同步練習冊答案