題目列表(包括答案和解析)
1 | 2 |
(09年揚州中學2月月考)(16分)已知函數(shù),
(1)已知函數(shù),如果是增函數(shù),且的導函數(shù)存在正零點,求的值
(2)設,且在上單調(diào)遞增,求實數(shù)的取值范圍.
(3)試求實數(shù)的個數(shù),使得對于每個,關(guān)于x的方程 都有滿足的偶數(shù)根
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.
(1)求數(shù)列的通項公式和數(shù)列的前n項和;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
第三問,
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
.
(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列
已知數(shù)列是首項為的等比數(shù)列,且滿足.
(1) 求常數(shù)的值和數(shù)列的通項公式;
(2) 若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;
(3) 在(2)的條件下,設數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.
【解析】第一問中解:由得,,
又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,
則即,所以p=1
故數(shù)列為首項是2,公比為2的等比數(shù)列,即.
此時也滿足,則所求常數(shù)的值為1且
第二問中,解:由等比數(shù)列的性質(zhì)得:
(i)當時,;
(ii) 當時,,
所以
第三問假設存在正整數(shù)n滿足條件,則,
則(i)當時,
,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com