(吉林省吉林市2008屆上期末)設斜率為2的直線l.過雙曲線的右焦 點.且與雙曲線的左.右兩支分別相交.則雙曲線離心率.e的取值范圍是 A.e> B.e> C.1<e< D.1<e<答案:A 查看更多

 

題目列表(包括答案和解析)

精英家教網已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,點M(2,3),N(2,-3)為C上兩點,斜率為
1
2
的直線l與橢圓C交于點A,B(A,B在直線MN兩側).
(I)求四邊形MANB面積的最大值;
(II)設直線AM,BM的斜率為k1,k2,試判斷k1+k2是否為定值.若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點為F1(-c,0),F(xiàn)2(c,0),M是橢圓上的一點,且滿足
F1M
F2M
=0

(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為5
2
;
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點P(0,-
3
3
)
、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

(I)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0)
,設斜率為k的直線l,交橢圓C于A、B兩點,AB的中點為M.證明:當直線l平行移動時,動點M在一條過原點的定直線上;
(Ⅱ)利用(I)所揭示的橢圓幾何性質,用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標出橢圓的中心.

查看答案和解析>>

(1)求右焦點坐標是(2,0),且經過點( -2 , -
2
 )
的橢圓的標準方程;
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0).設斜率為k的直線l,交橢圓C于A、B兩點,AB的中點為M.證明:當直線l平行移動時,動點M在一條過原點的定直線上.

查看答案和解析>>

精英家教網(1)求右焦點坐標是(2,0),且經過點(-2,-
2
)的橢圓的標準方程.
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0).設斜率為k的直線l交橢圓C于A、B兩點,AB的中點為M.證明:當直線l平行移動時,動點M在一條過原點的定直線上.
(3)利用(2)所揭示的橢圓幾何性質,用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標出橢圓的中心.

查看答案和解析>>


同步練習冊答案