.解法二: 以AB為直徑的圓的方程為: 查看更多

 

題目列表(包括答案和解析)

(2013•濟寧二模)如圖:C、D是以AB為直徑的圓上兩點,AB=2AD=2
3
,AC=BC,將圓沿直徑AB折起,使點C在平面ABD內(nèi)的射影E落在BD上.
(I)求證:平面ACD⊥平面BCD;
(Ⅱ)求三棱錐C-ABD的體積.

查看答案和解析>>

(2012•肇慶二模)已知點P是圓F1(x+
3
)2+y2=16
上任意一點,點F2與點F1關于原點對稱.線段PF2的中垂線與PF1交于M點.
(1)求點M的軌跡C的方程;
(2)設軌跡C與x軸的兩個左右交點分別為A,B,點K是軌跡C上異于A,B的任意一點,KH⊥x軸,H為垂足,延長HK到點Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點D,N為DB的中點.試判斷直線QN與以AB為直徑的圓O的位置關系.

查看答案和解析>>

(2012•海淀區(qū)二模)如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=
π3
,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.
(Ⅰ)求證:平面MOE∥平面PAC;
(Ⅱ)求證:平面PAC⊥平面PCB;
(Ⅲ)設二面角M-BP-C的大小為θ,求cosθ的值.

查看答案和解析>>

(2012•濟南二模)已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線y2=-4
6
x
的焦點為F1
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

查看答案和解析>>

(2013•石家莊二模)選修4-1:幾何證明選講
在Rt△ABC中,∠B=90°,AB=4,BC=3,以AB為直徑做圓0交AC于點D.
(Ⅰ)求線段CD的長度;
(Ⅱ)點E為線段BC上一點,當點E在什么位置時,直線ED與圓0相切,并說明理由.

查看答案和解析>>


同步練習冊答案