由可得: 查看更多

 

題目列表(包括答案和解析)

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.對(duì)于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項(xiàng)式.一般地,存在一個(gè)n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫多項(xiàng)式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請(qǐng)求出P4(t),即用一個(gè)cosx的四次多項(xiàng)式來(lái)表示cos4x;
(III)利用結(jié)論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無(wú)窮數(shù)列{an},使得a2011=2009?若存在,寫出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿足條件); 若不存在,說(shuō)明理由.

查看答案和解析>>

由某種設(shè)備的使用年限xi(年)與所支出的維修費(fèi)yi(萬(wàn)元)的數(shù)據(jù)資料,算得
5
i=1
x
2
i
=90,
5
i=1
xiyi
=112,
5
i=1
xi
=20,
5
i=1
yi
=25.
(Ⅰ)求所支出的維修費(fèi)y對(duì)使用年限x的線性回歸方程y=bx+a;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)估計(jì)使用年限為8年時(shí),支出的維修費(fèi)約是多少.
附:在線性回歸方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
-2
x
,a=
.
y
-b
.
x
,其中
.
x
,
.
y
為樣本平均值,線性回歸方程也可寫為
y
=
b
x+
a

查看答案和解析>>

由某種設(shè)備的使用年限(年)與所支出的維修費(fèi)(萬(wàn)元)的數(shù)據(jù)資料,算得,,,

(Ⅰ)求所支出的維修費(fèi)對(duì)使用年限的線性回歸方程;

(Ⅱ)判斷變量之間是正相關(guān)還是負(fù)相關(guān);

(Ⅲ)估計(jì)使用年限為8年時(shí),支出的維修費(fèi)約是多少.

附:在線性回歸方程中,,,其中,

樣本平均值,線性回歸方程也可寫為

 

查看答案和解析>>

由于工業(yè)化城鎮(zhèn)化的推進(jìn),大氣污染日益加重,空氣質(zhì)量逐步惡化,霧霾天氣頻率增大,大氣污染可引起心悸、胸悶等心臟病癥狀.為了解某市患心臟病是否與性別有關(guān),在某醫(yī)院心血管科隨機(jī)的對(duì)入院50位進(jìn)行調(diào)查得到了如下列聯(lián)表:?jiǎn)栍卸啻蟮陌盐照J(rèn)為是否患心臟病與性別有關(guān). 答:.

A.95% B.99%C.99.5% D.99.9%
 
患心臟病
不患心臟病
合計(jì)

20
5
25

10
15
25
合計(jì)
30
20
50
 
參考臨界值表:

0.15
0.10
0.05
0.025
0.010
0.005
0.001
K
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式: 其中n =" a" + b + c + d).

查看答案和解析>>


同步練習(xí)冊(cè)答案