聯(lián)立③.④.解得 ----1分 查看更多

 

題目列表(包括答案和解析)

數學家歐拉

  歐拉(Euler),瑞士數學家及自然科學家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時入讀巴塞爾大學,15歲大學畢業(yè),16歲獲碩士學位.

  歐拉是18世紀數學界最杰出的人物之一,他不但為數學界做出了巨大的貢獻,更把數學推至幾乎整個物理的領域.他是數學史上最多產的數學家,平均每年寫出八百多頁的論文,還寫了大量的力學、分析學、幾何學、變分法等的課本,《無窮小分析引論》、《微分學原理》、《積分學原理》等都成為數學中的經典著作.

  歐拉對數學符號的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對數的底,用i表示-1,用f(x)作為函數的符號,π雖不是歐拉首先提出的,但是在歐拉倡導下推廣普及的.尤為不可思議的是歐拉將數學中最為活躍的五個數1,0,π,e,i竟用一個美妙絕倫的公式聯(lián)系了起來:eiπ+1=0(歐拉指數公式),在西方數學界甚至認為此公式不亞于神的力量.

  歐拉對數學的研究如此廣泛,因此在許多數學的分支中也可經常見到以他的名字命名的重要常數、公式和定理.

1.你對歐拉(Euler)了解嗎?請查閱歐拉(Euler)的故事,對于他“13歲時入讀巴塞爾大學,15歲大學畢業(yè),16歲獲碩士學位”,你有何感觸?

2.作為新時代的青年,你做好將來為科學事業(yè)做貢獻的思想準備了嗎?

查看答案和解析>>

設雙曲線的兩個焦點分別為,離心率為2.

(1)求雙曲線的漸近線方程;

(2)過點能否作出直線,使與雙曲線交于、兩點,且,若存在,求出直線方程,若不存在,說明理由.

【解析】(1)根據離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.

(2)設直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關于x的一元二次方程,利用韋達定理表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.

 

查看答案和解析>>

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
,有如下信息:聯(lián)立方程組
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當A=0時,該方程恒有一解;
(2)當A≠0時,△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

某市甲、乙兩校高二級學生分別有1100人和1000人,為了解兩校全體高二級學生期 末統(tǒng)考的數學成績情況,采用分層抽樣方法從這兩所學校共抽取105名高二學生的數學 成績,并得到成績頻數分布表如下,規(guī)定考試成績在[120,150]為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數12981010y3
(1)求表中x與y的值;
(2)由以上統(tǒng)計數據完成下面2x2列聯(lián)表,問是否有99%的把握認為學生數學成績優(yōu)秀 與所在學校有關?
(3)若以樣本的頻率作為概率,現從乙?傮w中任取 3人(每次抽取看作是獨立重復的),求優(yōu)秀學生人數ξ的分布列和數學期望.(注:概率值可用分數表示)
甲校乙校總計
優(yōu)秀
非優(yōu)秀
總計

查看答案和解析>>

某市甲、乙兩校高二級學生分別有1100人和1000人,為了解兩校全體高二級學生期 末統(tǒng)考的數學成績情況,采用分層抽樣方法從這兩所學校共抽取105名高二學生的數學 成績,并得到成績頻數分布表如下,規(guī)定考試成績在[120,150]為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數12981010y3
(1)求表中x與y的值;
(2)由以上統(tǒng)計數據完成下面2x2列聯(lián)表,問是否有99%的把握認為學生數學成績優(yōu)秀 與所在學校有關?
(3)若以樣本的頻率作為概率,現從乙?傮w中任取 3人(每次抽取看作是獨立重復的),求優(yōu)秀學生人數ξ的分布列和數學期望.(注:概率值可用分數表示)
甲校乙校總計
優(yōu)秀
非優(yōu)秀
總計

查看答案和解析>>


同步練習冊答案