(2)當直線l的斜率為何值時..本小題考查雙曲線標準議程中各量之間關(guān)系.以及直線與雙曲線的位置關(guān)系. 查看更多

 

題目列表(包括答案和解析)

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當l的斜率為1時,坐標原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

查看答案和解析>>

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當l的斜率為1時,坐標原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

查看答案和解析>>

(本小題共12分) 在平面直角坐標系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點An(n,an) (n∈N*)都在斜率為2的同一條直線l上. 若a1=-3,b1=10。1)求數(shù)列{an}與{ bn }的通項公式;

(2)求當n取何值時△AnBnCn的面積Sn最小,并求出Sn的這個最小值。 

查看答案和解析>>

 (2012年高考湖北卷理科21)(本小題滿分13分)

設(shè)A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1)。當點A在圓上運動時,記點M的軌跡為曲線C。

(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;

(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由。

查看答案和解析>>

(本小題滿分14分)橢圓E的中心在原點O,焦點在x軸上,離心率,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:(λ≥2)。
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程。

查看答案和解析>>


同步練習冊答案