∴.解得 查看更多

 

題目列表(包括答案和解析)

解析幾何是數(shù)與形的結(jié)合,由方程組的解的組數(shù)可得圖形的位置關(guān)系.例如,當(dāng)兩個圓組成方程組無解時,說明兩圓無公共點(diǎn),此時兩圓的位置關(guān)系為相離,但可能是外離也可能是內(nèi)含.你能判斷方程組其他解的組數(shù)與兩圓的位置間的關(guān)系嗎?

查看答案和解析>>

解析幾何是數(shù)與形的結(jié)合,由方程組的解的組數(shù)可得圖形的位置關(guān)系.例如,當(dāng)兩個圓組成方程組無解時,說明兩圓無公共點(diǎn),此時兩圓的位置關(guān)系為相離,但可能是外離也可能是內(nèi)含.你能判斷方程組其他解的組數(shù)與兩圓的位置間的關(guān)系嗎?

查看答案和解析>>

解:因為有負(fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因為函數(shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

6. 解析:因為f(x)=ax+b有一個零點(diǎn)是2,所以f(2)=2a+b=0,所以b=-2a,所以,所以零點(diǎn)是

一所大學(xué)圖書館有6臺復(fù)印機(jī)供學(xué)生使用管理人員發(fā)現(xiàn),每臺機(jī)器的維修費(fèi)用與其使用的時間有一定的關(guān)系,根據(jù)去年一年的記錄,得到每周使用時間(單位:小時)與年維修費(fèi)用(單位:元)的數(shù)據(jù)如下:

時間

33

21

31

37

46

42

費(fèi)用

16

14

25

29

38

34

則使用時間與維修費(fèi)用之間的相關(guān)系數(shù)為        

查看答案和解析>>

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點(diǎn),又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點(diǎn)個數(shù)只有一個方法2:把函數(shù)的零點(diǎn)個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點(diǎn)個數(shù)問題,在坐標(biāo)系中畫出圖形


由圖看出顯然一個交點(diǎn),因此函數(shù)的零點(diǎn)個數(shù)只有一個

袋中有50個大小相同的號牌,其中標(biāo)著0號的有5個,標(biāo)著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>


同步練習(xí)冊答案