(2)解:設(shè)由①.得 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}是公差為d的等差數(shù)列,其前n項(xiàng)和為Sn
(1)已知a1=1,d=2,
(。┣螽(dāng)n∈N*時,
Sn+64
n
的最小值;
(ⅱ)當(dāng)n∈N*時,求證:
2
S1S3
+
3
S2S4
+…+
n+1
SnSn+2
5
16
;
(2)是否存在實(shí)數(shù)a1,使得對任意正整數(shù)n,關(guān)于m的不等式am≥n的最小正整數(shù)解為3n-2?若存在,則求a1的取值范圍;若不存在,則說明理由.

查看答案和解析>>

20、設(shè)非空集合S具有如下性質(zhì):①元素都是正整數(shù);②若x∈S,則10-x∈S.
(1)請你寫出符合條件,且分別含有一個、二個、三個元素的集合S各一個;
(2)是否存在恰有6個元素的集合S?若存在,寫出所有的集合S;若不存在,請說明理由;
(3)由(1)、(2)的解答過程啟發(fā)我們,可以得出哪些關(guān)于集合S的一般性結(jié)論(要求至少寫出兩個結(jié)論)?

查看答案和解析>>

設(shè)二次函數(shù)f(x)=(k-4)x2+kx(k∈R),對任意實(shí)數(shù)x,f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫出一個區(qū)間(a,b),使得當(dāng)a1∈(a,b)時,數(shù)列{an}在這個區(qū)間上是遞增數(shù)列,并說明理由;
(3)已知,求:log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)

查看答案和解析>>

設(shè)f(x)=
x
a(x+2)
,方程f(x)=x有唯一解,已知f(xn)=xn+1(n∈N*),且f(x1)=
1
1005

(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)若an=
4-4017xn
xn
,且bn=
a
2
n+1
+
a
2
n
2an+1an
(n∈N*)
,求和Sn=b1+b2+…+bn;
(3)問:是否存在最小整數(shù)m,使得對任意n∈N*,有f(xn)<
m
2010
成立,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

設(shè)函數(shù)y=f(x)對任意的實(shí)數(shù)x,都有f(x)=
12
f(x-1)
,且當(dāng)x∈[0,1]時,f(x)=27x2(1-x).
(1)若x∈[1,2]時,求y=f(x)的解析式;
(2)對于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點(diǎn)P,使得函數(shù)在點(diǎn)P處的切線與 x+y=0平行.若存在,那么這樣的點(diǎn)P有幾個;若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

查看答案和解析>>


同步練習(xí)冊答案