由.Q(2,1)兩點(diǎn)可得弦的斜率為.----10分 查看更多

 

題目列表(包括答案和解析)

直線(xiàn)l:y=2x+3被圓C:x2+y2+4x+2y+1=0所截得弦的長(zhǎng)為

A.1                  B.2                  C.                    D.4

查看答案和解析>>

直線(xiàn)l:y=2x+3被圓C:x2+y2+4x+2y+1=0所截得弦的長(zhǎng)為

A.1                B.2               C.                D.4

查看答案和解析>>

若直線(xiàn)x-y=2被圓(x-a)2+y2=4所截得弦的長(zhǎng)為2,則實(shí)數(shù)a的值為

[     ]

A.-1或
B.1或
C.-2或6
D.0或4

查看答案和解析>>

已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線(xiàn)的距離為,過(guò)點(diǎn)且傾斜角為銳角的直線(xiàn)與橢圓交于A、B兩點(diǎn),使得.

(1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線(xiàn)l的方程.

【解析】(1)中利用點(diǎn)F1到直線(xiàn)x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線(xiàn)方程。

解:(1)∵F1到直線(xiàn)x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問(wèn)知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

(2012•上海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),半焦距為c(c>0),且滿(mǎn)足(2a-3c)+(a-c)i=i(其中i為虛數(shù)單位),經(jīng)過(guò)橢圓的左焦點(diǎn)F(-c,0),斜率為k1(k1≠0)的直線(xiàn)與橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)k1=1時(shí),求S△AOB的值;
(3)設(shè)R(1,0),延長(zhǎng)AR,BR分別與橢圓交于C,D兩點(diǎn),直線(xiàn)CD的斜率為k2,求證:
k1
k2
為定值.

查看答案和解析>>


同步練習(xí)冊(cè)答案