20.如圖.已知正四棱柱ABCD―A1B1C1D1中AB=1.AA1=2.N是A1D的中點(diǎn).M∈BB1.異面直線MN.A1A互相垂直. (Ⅰ)試確定點(diǎn)M的位置.并加以證明, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,已知正方體ABCD—A1B1C1D1的棱長為2,E、F分別是A1B1、CC1的中點(diǎn),過D1、E、F作平面D1EGF交BB1于G。  (1)求證:EG//D1F;   (2)求銳二面角C1—D1E—F的余弦值。

查看答案和解析>>

(本小題滿分12分)如圖,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=,AF=1,M是線段EF的中點(diǎn)。
(Ⅰ)求證:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.
(Ⅲ)試問:在線段AC上是否存在一點(diǎn)P,使得直線PF與AD所成角為60°?

查看答案和解析>>

(本小題滿分12分)如圖,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=,AF=1,M是線段EF的中點(diǎn)。
(Ⅰ)求證:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.

查看答案和解析>>

(本小題滿分12分)如圖,已知正三棱柱的各棱長都是4, 的中點(diǎn),動點(diǎn)在側(cè)棱上,且不與點(diǎn)重合.

(I)當(dāng)時(shí),求證:;

(II)設(shè)二面角的大小為,求的最小值.

 

 

 

 

查看答案和解析>>

(本小題滿分12分)

如圖,已知正三棱柱ABCA1B1C1的底面邊長是2,DCC1的中點(diǎn),直線AD與側(cè)面BB1C1C所成的角是45°.

   (I)求二面角ABDC的大;

   (II)求點(diǎn)C到平面ABD的距離.

                

 

查看答案和解析>>

 

一、選擇題

A卷:BACDB    DCABD    BA

B卷:BDACD    BDCAB    BA

二、填空題

13.15  

14.210

15.

16.①④

三、解答題:

17.文 解:

   (Ⅰ)3人各自進(jìn)行1次實(shí)驗(yàn)都沒有成功的概率

…………………………6分

   (Ⅱ)甲獨(dú)立進(jìn)行3次實(shí)驗(yàn)至少有兩次成功的概率

…………………………12分

17.理 解:(注:考試中計(jì)算此題可以使用分?jǐn)?shù),以下的解答用的是小數(shù))

   (Ⅰ)同文(Ⅰ)

   (Ⅱ)的概率分別為

隨機(jī)變量的概率分布為

0

1

2

3

P

0.216

0.432

0.288

0.064

………………8分

的數(shù)學(xué)期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

(或利用E=np=3×0.4=1.2)

的方差為

D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

=0.72.…………………………12分

(或利用D=npq=3×0.4×0.6=0.72)

18.文 解:

   (Ⅰ)設(shè)數(shù)列

所以……………………3分

所以…………………………6分

   (Ⅱ)………………9分

………………12分

18.理 解:

   (Ⅰ)

…………4分

所以,的最小正周期,最小值為-2.…………………………6分

   (Ⅱ)列表:

x

0

2

0

-2

0

 

 

 

 

 

 

 

 

 

 

 

 

…………………12分

(19?文)同18?理.

(19?理)解:(Ⅰ)取A1A的中點(diǎn)P,連PM、PN,則PN//AD,

    1.  

       

       

       

       

       

       

       

       

       

         (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

               顯然

      利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

      cos∠A1OA=.

      所以二面角的大小為arccos……………………………………………12分

      (20?文)同19理.

      (20?理)(I)證明:當(dāng)q>0時(shí),由a1>0,知an>0,所以Sn>0;………………2分

      當(dāng)-1<q<0時(shí),因?yàn)閍1>0,1-q>0,1-qn>0,所以.

      綜上,當(dāng)q>-1且q≠0時(shí),Sn>0總成立.……………………5分

         (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

              Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

              依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

              ∵Sn>0,∴可得q-kq2>k,

      即k(1+q2)<q,k<.

      ∴k的取值范圍是. ……………………12分

      (21?文)解:f′(x)=3x2+4ax-b.………………………………2分

               設(shè)f′(x)=0的二根為x1,x2,由已知得

               x1=-1,x2≥2,………………………………………………4分

               …………………………7分

              解得

              故a的取值范圍是…………………………………………12分

      (21?理)解:(I)設(shè)橢圓方程

              由2c=4得c=2,又.

              故a=3,b2=a2-c2=5,

              ∴所求的橢圓方程.…………………………………………5分

         (II)點(diǎn)F的坐標(biāo)為(0,2),設(shè)直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

      得(9+5k2)x2+20kx-25=0,………………………………8分

      顯然△>0成立,

      根據(jù)韋達(dá)定理得

      ,                       ①

      .                           ②

      ,

      ,代入①、②得

                                           ③

                                          ④

      由③、④得

       …………………………………………14分

      (22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

      (22.理)(1)證明:令

      原不等式…………………………2分

      ,

      單調(diào)遞增,,

      ………………………………………………5分

      單調(diào)遞增,

       …………………………………………8分

      ………………………………9分

         (Ⅱ)令,上式也成立

      將各式相加

      ……………11分

      ……………………………………………………………………14分

       

       

       

       

       

       

       


      同步練習(xí)冊答案