綜上所述 a≤5. -----------------10分 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域為真數(shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當(dāng),即時,            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當(dāng),即時,在區(qū)間上為減函數(shù).

所以.               

綜上所述,當(dāng)時,;

當(dāng)時,

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

第一問中,利用當(dāng)時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時,令,對稱軸,

上單調(diào)遞增,又    

① 當(dāng),即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習(xí)冊答案