22.定義在定義域D內(nèi)的函數(shù)y=f(x),若對任意的x1,x2ÎD都有|f(x1)-f(x2)|<1.則稱函數(shù)為“西湖函數(shù) .否則稱“非西湖函數(shù) .函數(shù), 查看更多

 

題目列表(包括答案和解析)

對于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足下列條件:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫閉函數(shù)。
(1)判斷函數(shù),x∈[-2,2]是否為閉函數(shù)?并說明理由;
(2)判斷函數(shù)y=x2-2kx+k+1,x∈[k,+∞)是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

對于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫做閉函數(shù).
(Ⅰ)請你舉出一個(gè)閉函數(shù)的例子,并寫出它的一個(gè)符合條件②的區(qū)間[a,b];
(Ⅱ)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(Ⅲ)判斷函數(shù)f(x)=
3
4
x+
1
x
  (x>0)
是否為閉函數(shù)?并說明理由.

查看答案和解析>>

對于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫做閉函數(shù).
(Ⅰ)請你舉出一個(gè)閉函數(shù)的例子,并寫出它的一個(gè)符合條件②的區(qū)間[a,b];
(Ⅱ)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(Ⅲ)判斷函數(shù)數(shù)學(xué)公式是否為閉函數(shù)?并說明理由.

查看答案和解析>>

對于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫做閉函數(shù).
(Ⅰ)請你舉出一個(gè)閉函數(shù)的例子,并寫出它的一個(gè)符合條件②的區(qū)間[a,b];
(Ⅱ)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(Ⅲ)判斷函數(shù)f(x)=
3
4
x+
1
x
  (x>0)
是否為閉函數(shù)?并說明理由.

查看答案和解析>>

函數(shù)y=f(x)定義域?yàn)镈,若滿足:
①f(x)在D內(nèi)是單調(diào)函數(shù);
②存在[m,n]⊆D使f(x)在[m,n]上的值域?yàn)閇],那么就稱y=f(x)為“減半函數(shù)”.若函數(shù)f(x)=是“減半函數(shù)”,則t的取值范圍為______.

查看答案和解析>>

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

D

D

A

A

C

C

A

D

B

D

 

二、填空題:(本題每小題4分,共16分)

13。-1    14、-2    15、{x|-2<x<-1或0<x<1或2<x<3}      16、19kg.

 

三、解答題:(本題共76分)

17.(1)∵這輛汽車在第一、二個(gè)交通崗均未遇到紅燈,而第三個(gè)交通崗遇到紅燈

(2)

18.解(1)令則2bx2+x+a=0

       由題意知:x=1,2是上方程兩根,由韋達(dá)定理:
                 ∴
      (2)由(1)知:
       令   解得:x<0或1<x<2
       ∴f(x)的單調(diào)增區(qū)間為(1,2)   減區(qū)間是(0,1)和(2,+
      (3)由(2)知:f(x)在x1=1處取極小值,在x2=2處取極大值。

19.(1)  

  (2)

 

 

 

 

 

 

 

 

 

20、(Ⅰ)由已知

(Ⅱ)由(Ⅰ)得

21、解:(1)2-≥0, 得≥0, x<-1或x≥1  即A=(-∞,-1)∪[1,+ ∞)

(2) 由(x-a-1)(2a-x)>0, 得(x-a-1)(x-2a)<0.

∵a<1,∴a+1>2a, ∴B=(2a,a+1).∵BA, ∴2a≥1或a+1≤-1, 即a≥或a≤-2, 而a<1,

≤a<1或a≤-2, 故當(dāng)BA時(shí), 實(shí)數(shù)a的取值范圍是(-∞,-2)∪[,1]  

22、因?yàn)?sub>,

是“西湖函數(shù)”.

 


同步練習(xí)冊答案