題目列表(包括答案和解析)
(本小題滿分12分) 某公司是否對某一項目投資,由甲、乙、丙三位決策人投票決定.他們?nèi)硕加小巴狻、“中立”、“反對”三類票各一張.投票時,每人必須且只能投一張票,每人投三類票中的任何一類票的概率都為,他們的投票相互沒有影響.規(guī)定:若投票結果中至少有兩張“同意”票,則決定對該項目投資;否則,放棄對該項目投資.(Ⅰ)求此公司決定對該項目投資的概率(Ⅱ)求此公司放棄對該項目投資且投票結果中最多有一張“中立”票的概率。
(本小題滿分12分)
某公司是專門生產(chǎn)健身產(chǎn)品的企業(yè),第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對第一批產(chǎn)品上市后的市場銷售進行調(diào)研,結果如圖(1)、(2)所示.其中(1)的拋物線表示的是市場的日銷售量與上市時間的關系;(2)的折線表示的是每件產(chǎn)品的銷售利潤與上市時間的關系.
(1)寫出市場的日銷售量與第一批產(chǎn)品A上市時間t的關系式;
(2)第一批產(chǎn)品A上市后的第幾天,這家公司日銷售利潤最大,最大利潤是多少?
(本小題滿分12分) 某公司是否對某一項目投資,由甲、乙、丙三位決策人投票決定.他們?nèi)硕加小巴狻、“中立”、“反對”三類票各一張.投票時,每人必須且只能投一張票,每人投三類票中的任何一類票的概率都為,他們的投票相互沒有影響.規(guī)定:若投票結果中至少有兩張“同意”票,則決定對該項目投資;否則,放棄對該項目投資.(Ⅰ)求此公司決定對該項目投資的概率(Ⅱ)求此公司放棄對該項目投資且投票結果中最多有一張“中立”票的概率。
(本小題滿分12分)某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元。該公司第n年需要付出設備的維修和工人工資等費用的信息如下圖。
(1)求;
(2)引進這種設備后,第幾年后該公司開始獲利;
(本小題滿分12分)已知三次函數(shù)的導函數(shù),,.為實數(shù).
(1)若曲線在點(,)處切線的斜率為12,求的值;
(2)若在區(qū)間[-1,1]上的最小值.最大值分別為-2.1,且,求函數(shù)的解析式.
1.A 2.B 3.A 4.D 5.C 6.A 7.D 8.B 9.B 10.D 11.B 12.D
13.-3 14.7 15.①④ 16.3
17.解:(1)f(x)=Acos2(ωx+φ)+1=cos(2ωx+2φ)++1.
又A>0,ω>0,0<φ<,∴f(x)的最大值為A+1,最小值為1.
由f(x)的最大值與最小值的差為2,∴A=2.
由f(x)過點(0,2),f(0)=cos 2φ+2=2,∴φ=,
則T=4π=,∴ω=,f(x)=cos(x+)+2=2-sinx.6分
(2)∵B=,∴b=f(B)=2-sin(?)=.
設A,C所對的邊分別為a,c,由余弦定理得=a2+c2-2accos,+ac=a2+c2≥2ac,ac≤,
當且僅當a=c=時等號成立,△ABC的面積S=acsin≤.12分
18.解:(1)某應聘者能被聘用的概率為p0=1-(1-)(1-)(1-p)=+p.4分
(2)在4位應聘者中恰好有2人被聘用的概率為CP?(1-P0)2,
由于p0(1-p0)≤()2,當p0=1-p0,即p0=時,p0(1-p0)取最大值,
此時+p=,解得p=.7分
(3)4位應聘者中被聘用人數(shù)ξ的取值為0,1,2,3,4,
P(ξ=0)=C()4()0=,P(ξ=1)=C()3()1=,
P(ξ=2)=C()2()2=,P(ξ=3)=C()1()3=,
P(ξ=4)=C()0()4=,
其分布列為
ξ
0
1
2
3
4
p
由于ξ服從二項分布,所以Eξ=2.12分
19.解:(1)連AQ,∠PQA是PQ與平面ABCD所成角,AQ=2,BQ=2,即Q是BC的中點,過Q作QH⊥AD于H,則QH⊥平面PAD,過Q作QM⊥PD,連MH,則∠QMH為所求二面角的平面角.
在Rt△PAD中,=⇒MH===,
所以tan∠QMH===,
從而所求二面角的大小為arctan .6分
(2)由于Q是BC的中點,可得DQ⊥PQ,
⇒面PAQ⊥面PDQ,
過A作AG⊥PQ于G,則AG為點A到平面PQD的距離.
AG===.12分
另解:分別以AD,AB,AP為x,y,z軸建立空間直角坐標系,
由條件知Q是BC的中點,面PAD的一個法向量是=(0,2,0).
又D(4,0,0),Q(2,2,0),P(0,0,4),
故=(0,2,0),=(-4,0,4),
設面PDQ的法向量為n=(x,y,z),
則⇒由此可取n=(1,1,1),
從而(1)cos〈,n〉===.
(2)面PDQ的一個法向量為n=(1,1,1),=(2,2,0),
故點A到平面PDQ的距離d===.
20.解:(1)設f(x)=(k為非零常數(shù)),易得f(x)=(1≤x≤2).3分
(2)f′(x)=-,f′(t)=-,點P(t,),∴l(xiāng):y-=-(x-t),即l:y=-x+.l在x軸和y軸上的截距分別是2t和.
①當>3,即t<時,2t<<3,此時f(t)==(8t-3t2).
②當≤3,且2t≤3即≤t≤時,f(t)=?2t?=4.
③當2t>3,即t>時,此時<3,f(t)==(4t-3).
故f(t)=8分
當1≤t<時,f′(t)=(4-3t)>0,f(t)為增函數(shù);當<t≤2時,f′(t)=<0,f(t)為減函數(shù),且f(t)在[1,2]上連續(xù),所以f(t)max=4.12分
21.解:(1)設∠MAB=θ,M(x,y),則∠MBA=2θ,tan θ=,tan 2θ=,tan 2θ=⇒x2-=1(x<-1).4分
(2)設CD:y=-3x+m,
⇒6x2-6mx+m2+3=0.
由于此方程在(-∞,-1)內(nèi)有兩個不同的根,易求得m<-.
設C(x1,y1),D(x2,y2),并設點C在直線l的上方,則
y1=-3x1+m,y2=-3x2+m.
假設A,B,C,D四點共圓,由于∠CBA=2∠CAB,∠DBA=2∠DAB,
故∠CBD=2∠CAD,由此∠CAD=60°.
tan 60°==.
⇒=
⇒=
⇒=-⇒(x1-x2)2=(m+6)2
⇒m=-<-.
∴x1+x2=m=-,y1+y2=-3(x1+x2)+2m=,從而CD中點為(-,),代入直線l的方程得=-×+b⇒b=.
故存在b=滿足題設條件.12分
22.解:(1)令n=1得a1=5.
由4Sn=3an+8n2-3
得4Sn-1=3an-1+8(n-1)2-3
兩式相減得an=-3an-1+16n-8.
設此式可寫成an-pn-q=-3[an-1-p(n-1)-q],可解得p=4,q=1,
于是an-4n-1=(-3)n-1(a1-4×1-1),而a1=5,故有an=4n+1.6分
(注:也可以采取先猜,后用數(shù)學歸納法證的辦法得出通項)
(2)由bn=(4n-1)(4n+1)(4n+3)有
==(-)
=(-)
<(-).
++…+<[(-)+(-)+…+(-)]
=[-]<=.14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com