(1) 求證: 平面平面; 查看更多

 

題目列表(包括答案和解析)

13、求證:若一直線與一個平面平行,則過平面內(nèi)的一點且與這條直線平行的直線必在此平面內(nèi).

查看答案和解析>>

10、求證兩兩相交而不過同一點的四條直線必在同一個平面內(nèi).

查看答案和解析>>

平面直角坐標系中,O為坐標原點,給定兩點A(1,0),B(0,-2),點C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求點C的軌跡方程;
(Ⅱ)設點C的軌跡與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
交于兩點M,N,且以MN為直徑的圓過原點,求證:
1
a2
-
1
b2
為定值.

查看答案和解析>>

平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點,求證:這n條直線把平面分割成
12
(n2+n+2)塊.

查看答案和解析>>

31、平面內(nèi)有n個圓,其中每兩個圓都交于兩點,且無三個圓交于一點,求證:這n個圓將平面分成n2+n+2個部分.

查看答案和解析>>

說明:1.參考答案與評分標準指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點和能力比照評分標準給以相應的分數(shù).

      2.對解答題中的計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分數(shù)不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

      3.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

4.只給整數(shù)分數(shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題主要考查基本知識和基本運算.共8小題,每小題5分,滿分40分.

 

題號

1

2

3

4

5

6

7

8

答案

A

B

C

D

A

C

B

D

 

二、填空題:本大題主要考查基本知識和基本運算.本大題共7小題,每小題5分,滿分30分.其中13~15是選做題,考生只能選做兩題. 第12題第一個空2分,第二個空3分.

9.         10.    11.       12.-1;4     13.

14.1         15.   

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關系等基礎知識,考查運算求解能力

解: (1)∵, 且,

     ∴ .                                      

     由正弦定理得.                                       

     ∴.                                     

   (2)∵                                        

     ∴.

     ∴ .                                                       

    由余弦定理得,

.     

 

17.(本小題滿分14分)

本小題主要考查概率、隨機變量的分布列及其數(shù)學期望等基礎知識,考查運算求解能力

解:(1)記“甲射擊一次,擊中目標”為事件,“乙射擊一次,擊中目標”為事件,“甲射擊一次,

未擊中目標”為事件,“乙射擊一次,未擊中目標”為事件,

,.                        

依題意得,                                

        解得.

        故的值為.                                                    

(2)的取值分別為.                                            

,                      

,

,                     

的分布列為

0

2

4

 

                                                                    

                                    

 

18.(本小題滿分14分)

(本小題主要考查空間中線面的位置關系、空間的角、幾何體體積等基礎知識,考查空間想象能力、推理論證能力和運算求解能力)

 (1) 證明: ∵分別是棱的中點,

         ∴是△的中位線.

         ∴.                              

         ∵平面平面

         ∴平面.                                             

         同理可證 平面.       

平面,平面,

∴平面// 平面.                                      

               

(2) 求三棱錐的體積的最大值, 給出如下兩種解法:

解法1: 由已知平面, ,

    ∴.

    ∴三棱錐的體積為

                                                   

                               

                              

                               .                                 

     當且僅當時等號成立,取得最大值,其值為, 此時.          

 

     

解法2:設,在Rt△中,.

     

      ∴三棱錐的體積為

                                

                                                         

                                

                                 .   

       ∵,          

     ∴ 當,即時,取得最大值,其值為,此時.

    求二面角的平面角的余弦值, 給出如下兩種解法:

 解法1:作,垂足為, 連接.

      ∵ 平面,平面平面,

      ∴ 平面.

      ∵ 平面,     

.

      ∵ ,     

平面.

平面,

      ∴.

     ∴ 是二面角的平面角.                              

     在Rt△中,,

     ∴.

在Rt△中,,

.

∴二面角的平面角的余弦值為.                     

解法2:分別以所在直線為軸, 軸, 軸,建立如圖的空間直角坐標系,

     則.

     ∴.  

   設n為平面的法向量,

 

, 則.

為平面的一個法向量.                           

∵平面的一個法向量為,

.             

∴二面角的平面角的余弦值為.                        

19.(本小題滿分12分)

(本小題主要考查函數(shù)最值、不等式、導數(shù)及其應用等基礎知識,考查分類與整合的數(shù)學思想方法,以及運算求解能力和應用意識)

解:(1)生產(chǎn)150件產(chǎn)品,需加工型零件450個,

則完成型零件加工所需時間N,且.   

     (2)生產(chǎn)150件產(chǎn)品,需加工型零件150個,

 則完成型零件加工所需時間N,且.

設完成全部生產(chǎn)任務所需時間為小時,則的較大者.

,即,

解得.                                                       

所以,當時,;當時,.

.                             

時,,故上單調(diào)遞減,

上的最小值為(小時);                  

 當時,,故上單調(diào)遞增,

上的最小值為(小時);            

上的最小值為.

.

答:為了在最短時間內(nèi)完成生產(chǎn)任務,應取.                        

 

20.(本小題滿分14分)

(本小題主要考查圓、橢圓、直線等基礎知識和數(shù)學探究,考查數(shù)形結(jié)合、分類與整合的數(shù)學思想方法,以及推理論證能力、運算求解能力和創(chuàng)新意識)

解:(1)圓, 圓心的坐標為,半徑.

,

∴點在圓內(nèi).                                                   

設動圓的半徑為,圓心為,依題意得,且,

.                                               

∴圓心的軌跡是中心在原點,以兩點為焦點,長軸長為的橢圓,設其方程為

,  則.

.

∴所求動圓的圓心的軌跡方程為.                          

 

 (2)由 消去化簡整理得:.

,,則.

 

.  ①                              

消去化簡整理得:.

,則,

 

.  ②                          

,

,即,

 

.

.

解得.                                                                     

時,由①、②得 

Z,

的值為 ,,;

,由①、②得  ,

Z,

.

∴滿足條件的直線共有9條.                                            

21.(本小題滿分14分)

(本小題主要考查數(shù)列的通項公式、數(shù)列前項和、不等式等基礎知識,考查化歸與轉(zhuǎn)化、分類與整合、特殊與一般的數(shù)學思想方法,以及推理論證能力、運算求解能力和抽象概括能力)

解: (1) ∵是關于的方程N的兩根,

      ∴                                                  

     求數(shù)列的通項公式, 給出如下四種解法:                

解法1: 由,得,                  

     故數(shù)列是首項為,公比為的等比數(shù)列.

, 即.                     

解法2: 由,兩邊同除以, 得,

     令, 則.

    

    

    

     .

也適合上式,

, 即.                     

解法3:  由,得,

       兩式相減得.

       當為正奇數(shù)時,

                        

                      

                       .

       且也適合上式.

       當為正偶數(shù)時,

                        

                        

                         .

       且也適合上式.

       ∴ 當N時,.                                   

解法4:由,,得,

.

     猜想.

下面用數(shù)學歸納法證明猜想正確.

①     當時,易知猜想成立;

② 假設當N)時,猜想成立,即,

   由,得,

  故當時,猜想也成立.

由①、②得,對任意N.                

   


同步練習冊答案