A.a(chǎn)>-3 B.a(chǎn)<-3 C.a(chǎn)> D. 查看更多

 

題目列表(包括答案和解析)

若a>b,c>d,則①
1
a
1
b
,②a-c>b-d,③
a
c
b
d
,④c2>d2.其中真命題的個(gè)數(shù)是(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

若a>b,在①
1
a
1
b
;②a2>b2;③lg(a-b)>0;④2a>2b;⑤
a
b
>1
中,正確的有( 。

查看答案和解析>>

①若a>b>0,c>d>0,則
1
ac
1
bd
; ②若c>a>b>0,則
a
c-a
b
c-b

③若a>b,則lg(a-b)>0; ④若a>b,則3(a-b)≥2(a-b)
其中正確的個(gè)數(shù)是( 。

查看答案和解析>>

若a>b,在①
1
a
1
b
;②a2>b2;③lg(a-b)>0;④2a>2b;⑤
a
b
>1
中,正確的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

設(shè)A>0,ω>0,0≤?<2π,函數(shù)f(x)=Asin(ωx+?),g(x)=Asin(2ωx+?),則函數(shù)f(x)在區(qū)間(
π
3
,
π
2
)
內(nèi)為增函數(shù)是函數(shù)g(x)在區(qū)間(
π
6
,
π
4
)
內(nèi)為增函數(shù)的( 。
A.既不充分也不必要條件B.充分不必要條件
C.必要不充分條件D.充分必要條件

查看答案和解析>>

一.選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

A

B

D

B

B

C

B

A

C

D

二.填空題

13. 4 ;          14.  ;      15. 2   ;     16.32 ;

三.解答題.

17.解:(1)  ……………………………2分

  ……………………………4分

  …………………………………………6分

(2)由余弦定理得:

(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)………………9分

  …………………………………………………11分

的面積最大值為  …………………………………………………………12分

18.解:(Ⅰ)由

 …………………2分

   ……………………………………4分

(Ⅱ)由整理得

∴數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列, …………………6分

∵當(dāng)時(shí)滿足  ………………………………………8分

(Ⅲ)

  ………………………………………………………………10分

∴當(dāng)時(shí),,當(dāng)時(shí),

高三數(shù)學(xué)(理科)(模擬一)答案第1頁

即當(dāng)或2時(shí),。當(dāng)時(shí),……2分

19.解:(Ⅰ)擲出點(diǎn)數(shù)x可能是:1,2,3,4.

分別得:。于是的所有取值分別為:0,1,4 .

因此的所有取值為:0,1,2,4,5,8.  …………………………………………2分

當(dāng)時(shí),可取得最大值8,

此時(shí),; ………………………………………………………4分

當(dāng)時(shí)且時(shí),可取得最小值 0.

此時(shí)   …………………………………………………………6分

(Ⅱ)由(1)知的所有取值為:0,1,2,4,5,8.

 ……………………………………………………………7分

當(dāng)時(shí),的所有取值為(2,3)、(4,3)、(3,2),(3,4)即;

當(dāng)時(shí),的所有取值為(2,2)、(4,4)、(4,2),(2,4)即…8分

當(dāng)時(shí),的所有取值為(1,3)、(3,1)即;

當(dāng)時(shí),的所有取值為(1,2)、(2,1)、(1,4),(4,1)即 …9分

所以的分布列為:

0

1

2

4

5

8

…………10分

 

的期望 ………………12分

1.jpg20.解:(Ⅰ)因?yàn)?sub>平面,   

所以平面平面,………………1分

,所以平面,

,又 ………2分

所以平面; ………………………3分

(Ⅱ)因?yàn)?sub>,所以四邊形為菱形,

,

又D為AC中點(diǎn),知 ……………4分

中點(diǎn)F,則平面,從而平面平面………………6分

,則,

高三數(shù)學(xué)(理科)(模擬一)答案第2頁

    在中,,故  ……………………………7分

到平面的距離為 …………………………………………8分

(Ⅲ)過,連,則

從而為二面角的平面角,  ……………………………………9分

,所以

中,………………………………………11分

故二面角的大小為 ………………………………………12分

解法2:(Ⅰ)如圖,取AB的中點(diǎn)E,則DE//BC,因?yàn)?sub>

1.jpg所以平面…………………1分

軸建立空間坐標(biāo)系,

 ……………………2分

從而平面   ……………3分

(Ⅱ)由,得 ………4分

設(shè)平面的法向量為

所以設(shè)……………………………7分

所以點(diǎn)到平面的距離………………………………8分

(Ⅲ)再設(shè)平面的法向量為

 所以 …………………………………9分

,根據(jù)法向量的方向, ………………………11分

可知二面角的大小為………………………………………12分

高三數(shù)學(xué)(理科)(模擬一)答案第3頁

21.解:(1)∵的圖象關(guān)于原點(diǎn)對(duì)稱,∴恒成立,即

的圖象在處的切線方程為…2分

,且 …………………3分

解得 故所求的解析式為 ……6分

(2)解

,由且當(dāng)時(shí),  ………………………………………………………………………………8分

當(dāng)時(shí)遞增;在上遞減。…9分

上的極大值和極小值分別為

故存在這樣的區(qū)間其中一個(gè)區(qū)間為…12分

22. 解:(1)由題意得設(shè)

① …………………………………2分

在雙曲線上,則

聯(lián)立①、②,解得:

由題意,∴點(diǎn)T的坐標(biāo)為(2,0). ………………………………4分

(2)設(shè)直線的交點(diǎn)M的坐標(biāo)為

、P、M三點(diǎn)共線,得:  ①

、、三點(diǎn)共線,得:

聯(lián)①、②立,解得: ……………………………………………6分

在雙曲線上,∴

∴軌跡E的方程為  ………………………………………8分

高三數(shù)學(xué)(理科)(模擬一)答案第4頁

(3)容易驗(yàn)證直線的斜率不為0.

故要設(shè)直線的方程為代入中得:

設(shè),則由根與系數(shù)的關(guān)系,

得:,①   ②  ………………………………10分

,∴有。將①式平方除以②式,得:

  ……………………………………………………………12分

  ∴

  …………………14分

 

 

 

 

 

高三數(shù)學(xué)(理科)(模擬一)答案第5頁

 

 

 

 


同步練習(xí)冊(cè)答案