若.求 的取值范圍. 高三數(shù)學(xué)第4頁(yè)2008―2009學(xué)年度南昌市高三第一次模擬測(cè)試卷 查看更多

 

題目列表(包括答案和解析)

(2013•長(zhǎng)寧區(qū)一模)已知函數(shù)f(x)=
1+x
+
1-x

(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)=
a
x
•[f2(x)-2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若-m2+2tm+
2
≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C:ρ=4cosθ
(1)若點(diǎn)A(1,
π
2
),點(diǎn)P是曲線(xiàn)C上任一點(diǎn),求
AP
2
的取值范圍;
(2)若直線(xiàn)l的參數(shù)方程是
x=t+m
y=t
,(t為參數(shù)),且直線(xiàn)l與曲線(xiàn)C有兩個(gè)交點(diǎn)M、N,且
CM
CN
=0
,求m的值.

查看答案和解析>>

某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)f(x)與時(shí)間x(小時(shí))的關(guān)系為f(x)=|
x
x2+1
+
1
3
-a|+2a
,x∈[{0,24}],其中a與氣象有關(guān)的參數(shù),且a∈[0,
3
4
]
,若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
(1)令t=
x
x2+1
,x∈[0,24]
,求t的取值范圍;
(2)求函數(shù)M(a);
(3)市政府規(guī)定,每天的綜合污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合污染指數(shù)是多少?是否超標(biāo)?

查看答案和解析>>

(2012•徐匯區(qū)一模)對(duì)定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)C,使得對(duì)任意的x∈[a,b]都有f(x)=C,且對(duì)任意的x∉[a,b]都有f(x)>C恒成立,則稱(chēng)函數(shù)f(x)為區(qū)間D上的“U型”函數(shù).
(1)求證:函數(shù)f(x)=|x-1|+|x-3|是R上的“U型”函數(shù);
(2)設(shè)f(x)是(1)中的“U型”函數(shù),若不等式|t-1|+|t-2|≤f(x)對(duì)一切的x∈R恒成立,求實(shí)數(shù)t的取值范圍;
(3)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“U型”函數(shù),求實(shí)數(shù)m和n的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
2x+3
3x
(x>0),數(shù)列{an}滿(mǎn)足a1=1,an=f(
1
an-1
)
(n∈N*,且n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對(duì)n∈N*恒成立,求實(shí)數(shù)t的取值范圍;
(3)是否存在以a1為首項(xiàng),公比為q(0<q<5,q∈N*)的數(shù)列{a_n k},k∈N*,使得數(shù)列{a_n k}中每一項(xiàng)都是數(shù)列{an}中不同的項(xiàng),若存在,求出所有滿(mǎn)足條件的數(shù)列{nk}的通項(xiàng)公式;若不存在,說(shuō)明理由.

查看答案和解析>>

一.選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

A

B

D

B

B

C

B

A

C

D

二.填空題

13. 4 ;          14.  ;      15. 2   ;     16.32 ;

三.解答題.

17.解:(1)  ……………………………2分

  ……………………………4分

  …………………………………………6分

(2)由余弦定理得:

(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)………………9分

  …………………………………………………11分

的面積最大值為  …………………………………………………………12分

18.解:(Ⅰ)由

 …………………2分

   ……………………………………4分

(Ⅱ)由整理得

∴數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列, …………………6分

∵當(dāng)時(shí)滿(mǎn)足  ………………………………………8分

(Ⅲ)

  ………………………………………………………………10分

∴當(dāng)時(shí),,當(dāng)時(shí),

高三數(shù)學(xué)(理科)(模擬一)答案第1頁(yè)

即當(dāng)或2時(shí),。當(dāng)時(shí),……2分

19.解:(Ⅰ)擲出點(diǎn)數(shù)x可能是:1,2,3,4.

分別得:。于是的所有取值分別為:0,1,4 .

因此的所有取值為:0,1,2,4,5,8.  …………………………………………2分

當(dāng)時(shí),可取得最大值8,

此時(shí),; ………………………………………………………4分

當(dāng)時(shí)且時(shí),可取得最小值 0.

此時(shí)   …………………………………………………………6分

(Ⅱ)由(1)知的所有取值為:0,1,2,4,5,8.

 ……………………………………………………………7分

當(dāng)時(shí),的所有取值為(2,3)、(4,3)、(3,2),(3,4)即;

當(dāng)時(shí),的所有取值為(2,2)、(4,4)、(4,2),(2,4)即…8分

當(dāng)時(shí),的所有取值為(1,3)、(3,1)即;

當(dāng)時(shí),的所有取值為(1,2)、(2,1)、(1,4),(4,1)即 …9分

所以的分布列為:

0

1

2

4

5

8

…………10分

 

的期望 ………………12分

1.jpg20.解:(Ⅰ)因?yàn)?sub>平面,   

所以平面平面,………………1分

,所以平面

,又 ………2分

所以平面; ………………………3分

(Ⅱ)因?yàn)?sub>,所以四邊形為菱形,

,

又D為AC中點(diǎn),知 ……………4分

中點(diǎn)F,則平面,從而平面平面………………6分

過(guò),則,

高三數(shù)學(xué)(理科)(模擬一)答案第2頁(yè)

    在中,,故  ……………………………7分

到平面的距離為 …………………………………………8分

(Ⅲ)過(guò),連,則

從而為二面角的平面角,  ……………………………………9分

,所以

中,………………………………………11分

故二面角的大小為 ………………………………………12分

解法2:(Ⅰ)如圖,取AB的中點(diǎn)E,則DE//BC,因?yàn)?sub>

1.jpg所以平面…………………1分

軸建立空間坐標(biāo)系,

 ……………………2分

從而平面   ……………3分

(Ⅱ)由,得 ………4分

設(shè)平面的法向量為

所以設(shè)……………………………7分

所以點(diǎn)到平面的距離………………………………8分

(Ⅲ)再設(shè)平面的法向量為

 所以 …………………………………9分

,根據(jù)法向量的方向, ………………………11分

可知二面角的大小為………………………………………12分

高三數(shù)學(xué)(理科)(模擬一)答案第3頁(yè)

21.解:(1)∵的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),∴恒成立,即

的圖象在處的切線(xiàn)方程為…2分

,且 …………………3分

解得 故所求的解析式為 ……6分

(2)解

,由且當(dāng)時(shí),  ………………………………………………………………………………8分

當(dāng)時(shí)遞增;在上遞減!9分

上的極大值和極小值分別為

故存在這樣的區(qū)間其中一個(gè)區(qū)間為…12分

22. 解:(1)由題意得設(shè)

① …………………………………2分

在雙曲線(xiàn)上,則

聯(lián)立①、②,解得:

由題意,∴點(diǎn)T的坐標(biāo)為(2,0). ………………………………4分

(2)設(shè)直線(xiàn)的交點(diǎn)M的坐標(biāo)為

、P、M三點(diǎn)共線(xiàn),得:  ①

、三點(diǎn)共線(xiàn),得:

聯(lián)①、②立,解得: ……………………………………………6分

在雙曲線(xiàn)上,∴

∴軌跡E的方程為  ………………………………………8分

高三數(shù)學(xué)(理科)(模擬一)答案第4頁(yè)

(3)容易驗(yàn)證直線(xiàn)的斜率不為0.

故要設(shè)直線(xiàn)的方程為代入中得:

設(shè),則由根與系數(shù)的關(guān)系,

得:,①   ②  ………………………………10分

,∴有。將①式平方除以②式,得:

  ……………………………………………………………12分

  ∴

  …………………14分

 

 

 

 

 

高三數(shù)學(xué)(理科)(模擬一)答案第5頁(yè)

 

 

 

 


同步練習(xí)冊(cè)答案