②類比推出 查看更多

 

題目列表(包括答案和解析)

類比推理

由兩類對象具有________和其中一類對象的________,推出另一類對象也具有________的推理稱為類比推理(簡稱________).簡言之,類比推理是由________的推理.

查看答案和解析>>

2、類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質,可推出正四面體的下列哪些性質,你認為比較恰當?shù)氖?div id="gww0eqa" class="quizPutTag">①②③

①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;
③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等.

查看答案和解析>>

類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質,可推出正四面體的下列性質,你認為比較恰當?shù)氖牵ā 。?BR>①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;
③各面都是面積相等的三角形,同一頂點上的任兩條棱的夾角都相等.

查看答案和解析>>

類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質,可推出正四面體的下列哪些性質,你認為恰當?shù)氖?nbsp;(  )
①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形;
③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等.


  1. A.
  2. B.
    ①②
  3. C.
    ①②③
  4. D.

查看答案和解析>>

類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質,可推出正四面體的下列哪些性質,你認為比較恰當?shù)氖牵?nbsp;  )

①各棱長相等,同一頂點上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等.

A.①               B.①②             C.①②③           D.③

 

查看答案和解析>>

一、選擇題:本大題共有12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項正確的

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在答題卡的相應位置。

13.(1,0)     14.       15.1      16.②③

三、解答題:本大題共6小題,共74分。解答應寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因為

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在,

 

        !9分

,

,

又由(Ⅰ)知

取得最大值時,為等邊三角形. …………………………12分

 

 

18.(本小題滿分12分)

解:(Ⅰ)設抽取的樣本為名學生的成績,

則由第一行中可知

;

②處的數(shù)值為;

③處的數(shù)值為…………4分

   (Ⅱ)成績在[70,80分的學生頻率為0.2,成績在[80.90分的學生頻率為0.32,

所以成績在[70.90分的學生頻率為0.52,……………………………………6分

由于有900名學生參加了這次競賽,

所以成績在[70.90分的學生約為(人)………………8分

   (Ⅲ)利用組中值估計平均為

…………12分

 

19.(本小題滿分12分)

解:(I)由幾何體的三視圖可知,低面ABCD是邊長為4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)連,

,

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小題滿分12分)

解:(I)10年后新建住房總面積為

    。………………………3分

    設每年拆除的舊住房為………………5分

    解得,即每年拆除的舊住房面積是…………………………………6分

(Ⅱ)設第年新建住房面積為,則=

所以當;…………………………………………9分

   

……………………………………12分

 

21.(本小題滿分12分)

解:(Ⅰ)由題意可知,可行域是以為頂點的三角形,因為,

    故,

    為直徑的圓,

    故其方程為………………………………………………3分

    設橢圓的方程為,

   

    又.

    故橢圓………………………………………5分

   (Ⅱ)直線始終與圓相切。

    設。

    當。

    若

               

    若

                 ;

    即當……………………………7分

    當時,,

    。

    因此,點Q的坐標為。

    ……………10分

   

    當

    。

    綜上,當,…………12分

 

22.(本小題滿分14分)

解:(I)(1),

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在,

    由

          

          

    ;

    當;

    ;

    .……………………………………6分

    面

   

    且

    又

    ,

   

    ……………9分

   (Ⅱ)當,

    ①;

    ②當時,

    ,

   

    ③

    從面得;

    綜上得,.………………………14分

 

 


同步練習冊答案