已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為(  )

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

一.選擇題

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

C

C

B

D

A

二填空題

13.;                14.-6 ;         15.;           16..

三.解答題

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4.

.……………………………………………………………… 2分

則V=.     ……………………………………………………………… 4分

 

(Ⅱ)∵PA=CA,F(xiàn)為PC的中點(diǎn),∴AF⊥PC.                …………………………5分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E為PD中點(diǎn),F(xiàn)為PC中點(diǎn),∴EF∥CD.則EF⊥PC.     …………………………7分

∵AF∩EF=F,∴PC⊥平面AEF.…………………………………………………………8分

(Ⅲ)以A為坐標(biāo)原點(diǎn),AD,AP所在直線分別為y軸,z軸,建立空間直角坐標(biāo)系,

則平面PAD的法向量為:=(1,0,0)

由(Ⅱ)知AF⊥PC,AF⊥CD   ∴AF⊥平面PCD

為平面PCD的法向量.

∵P(0,0,2),C=

,即二面角C-PD-A的余弦值為…………12分

19.解:設(shè)第一個(gè)匣子里的三把鑰匙為A,B,C,第二個(gè)匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開(kāi)所有門(mén),B只能打開(kāi)第一道門(mén),b只能打開(kāi)第二道門(mén),C,c不能打開(kāi)任何一道門(mén))

(Ⅰ)…………………………………………………………………………4分

(Ⅱ)(第一次只能拿B,第二次只能拿c) ……………………………6分

(第一次只能拿B,第二次只能拿b) ……………………………8分

(第一次拿A,第二次隨便拿,或第一次拿B,第二次拿a) …10分

                   …………………………12分

 

20.(Ⅰ)依題

 

…………………………………………………3分

為等差數(shù)列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分

成等差數(shù)列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

 

21解:(Ⅰ)依題PN為AM的中垂線

…………………………………………………………2分

又C(-1,0),A(1,0)

所以N的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分

a=,c=1,所以為所求………………………………………………………5分

(Ⅱ)設(shè)直線的方程為:y=k(x-1)代入橢圓方程:x2+2y2=2得

(1+2k2)x2-4k2x+2k2-2=0………………(1)

設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個(gè)根.

…………………………………………………………7分

依題

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解:(Ⅰ)

,則

   即成等差數(shù)列……………………3分

(Ⅱ)依題意

    

∴切線

,即

∴切線過(guò)點(diǎn).……………………………………………………………………………8分

(Ⅲ),則

   ∴

時(shí):

時(shí),,此時(shí)為增函數(shù);

時(shí),,此時(shí)為減函數(shù);

時(shí),,此時(shí)為增函數(shù).

    而,依題意有    ………………10分

時(shí):時(shí),

  即……(☆)

,則

為R上的增函數(shù),而,∴時(shí),

恒成立,(☆)無(wú)解.

綜上,為所求.…………………………………………………………………………14分

 

 


同步練習(xí)冊(cè)答案