12.多面體表面上三個(gè)或三個(gè)以上平面的公共點(diǎn)稱為多面體的頂點(diǎn).用一個(gè)平面截一個(gè)n棱柱.截去一個(gè)三棱錐.剩下的多面體頂點(diǎn)的數(shù)目是 查看更多

 

題目列表(包括答案和解析)

下列說法正確的有()
①直線與平面有公共點(diǎn),則直線在平面內(nèi)
②線段AB在平面a內(nèi),但直線AB不全在a內(nèi)
③如果一條直線上所有點(diǎn)都在某個(gè)面內(nèi),則這個(gè)面一定是平面
④兩個(gè)相交平面的公共點(diǎn)不可能只有兩個(gè)


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)

查看答案和解析>>

在空間中,有下列說法中正確的是( 。

查看答案和解析>>

在空間中,有下列說法中正確的是( 。
A.經(jīng)過空間內(nèi)三點(diǎn),有且只有一個(gè)平面
B.兩個(gè)平面的公共點(diǎn)的集合,可能是一條線段
C.平行于同一條直線的兩條直線平行
D.兩個(gè)相交平面存在不在一條直線上三個(gè)公共點(diǎn)

查看答案和解析>>

在空間中,有下列說法中正確的是


  1. A.
    經(jīng)過空間內(nèi)三點(diǎn),有且只有一個(gè)平面
  2. B.
    兩個(gè)平面的公共點(diǎn)的集合,可能是一條線段
  3. C.
    平行于同一條直線的兩條直線平行
  4. D.
    兩個(gè)相交平面存在不在一條直線上三個(gè)公共點(diǎn)

查看答案和解析>>

16、直線y=a與函數(shù)f(x)=x3-3x的圖象有三個(gè)互不相同的公共點(diǎn),求a的取值范圍.

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

D

A

B

D

B

C

B

C

D

B

1.提示:所以,故選C。

2.提示:命題P:,所以命題P是假命題,

命題Q

當(dāng)時(shí),。 ,所以以命題Q是真命題,故選D。故選A。

3.提示:,所以,故選D。

4.提示:在AB上取點(diǎn)D,使得,則點(diǎn)P只能在AD內(nèi)運(yùn)動(dòng),則

5.提示:故選B。

6.提示:由圖(1)改為圖(2)后每次循環(huán)時(shí)的值都為1,因此運(yùn)行過程出現(xiàn)無(wú)限循環(huán),故選D

7.提示:設(shè)全班40個(gè)人的總分為S,

,故選B。

8.提示:

所以約束條件為表示的平面區(qū)域是以點(diǎn)O(0,0),,N(0,1),Q(2,3)為頂點(diǎn)的平行四邊形(包括邊界),故當(dāng)時(shí),的最大值是4,故選C。

9.提示:由

如圖

過A作于M,則

 .

故選B.

10.提示:不妨設(shè)點(diǎn)(2,0)與曲線上不同的三的點(diǎn)距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以不能取到。故選B。

11.提示:使用特值法:取集合當(dāng)可以排除A、B;

取集合,當(dāng)可以排除C;故選D;

12.提示:n棱柱有個(gè)頂點(diǎn),被平面截去一個(gè)三棱錐后,可以分以下6種情形(圖1~6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

在圖4,圖6所示的情形,還剩個(gè)頂點(diǎn);

在圖5的情形,還剩個(gè)頂點(diǎn);

在圖2,圖3的情形,還剩個(gè)頂點(diǎn);

在圖1的情形,還剩下個(gè)頂點(diǎn).故選B.

二、填空題:

13.   

提示:由

14. 

提示:斜率 ,切點(diǎn),所以切線方程為:

15.

提示:當(dāng)時(shí),不等式無(wú)解,當(dāng)時(shí),不等式變?yōu)?sub> ,

由題意得,所以,

16.

三、解答題:

17.解:① ∵的定義域?yàn)镽;

② ∵,

 ∴為偶函數(shù);

③ ∵,  ∴是周期為的周期函數(shù);

④ 當(dāng)時(shí),= ,

∴當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí),

=

單調(diào)遞增;又∵是周期為的偶函數(shù),∴上單調(diào)遞增,在上單調(diào)遞減();

⑤ ∵當(dāng)時(shí)

當(dāng)時(shí).∴的值域?yàn)?sub>;

 ⑥由以上性質(zhì)可得:上的圖象如圖所示:

 

 

 

 

18.解:(Ⅰ)取PC的中點(diǎn)G,連結(jié)EG,GD,則

由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

所以四邊形FEGD為矩形,因?yàn)镚為等腰Rt△RPD斜邊PC的中點(diǎn),

所以DG⊥PC,

    1. 所以DG⊥平面PBC.

      因?yàn)镈G//EF,所以EF⊥平面PBC。

      (Ⅱ) 

       

       

       

       

      19.解:(1);根據(jù)題意:的二個(gè)根;

           由于;; 

           所以;

            (2)由的二個(gè)根;所以

      所以:

             ;

           又

      所以:;故:線段的中點(diǎn)在曲線上;

      20.解:

      分別記“客人瀏覽甲、乙、丙景點(diǎn)”為事件。則相互獨(dú)立,且

      客人瀏覽景點(diǎn)數(shù)可能取值為0、1、2、3;相應(yīng)在客人沒有瀏覽的景點(diǎn)數(shù)的可能取值為3、2、1、0

      的分布列為

      1

      3

      p

      0.76

      0.24

      (2)

      上單調(diào)遞增,那么要上單調(diào)遞增,必須,即

       

      21.解:(1)由已知,當(dāng)時(shí),

      ,

      當(dāng)時(shí),,

      兩式相減得:

      當(dāng)時(shí),適合上式,

      (2)由(1)知

      當(dāng)時(shí),

      兩式相減得:

      ,則數(shù)列是等差數(shù)列,首項(xiàng)為1,公差為1。

      (3)

      要使得恒成立,

      恒成立,

      恒成立。

      當(dāng)為奇數(shù)時(shí),即恒成立,又的最小值為1,

      當(dāng)為偶數(shù)時(shí),即恒成立,又的最大值為,

      為整數(shù),

      ,使得對(duì)任意,都有

      22.解:(1)由題意知

      解得,故,

      所以函數(shù)在區(qū)間 上單調(diào)遞增。

      (2)由

      所以點(diǎn)G的坐標(biāo)為

      函數(shù)在區(qū)間 上單調(diào)遞增。

      所以當(dāng)時(shí),取得最小值,此時(shí)點(diǎn)F、G的坐標(biāo)分別為

      由題意設(shè)橢圓方程為,由于點(diǎn)G在橢圓上,得

      解得

      所以得所求的橢圓方程為。

      (3)設(shè)C,D的坐標(biāo)分別為,則

      ,得,

      因?yàn)椋c(diǎn)C、D在橢圓上,,

      消去。又,解得

      所以實(shí)數(shù)的取值范圍是

       

       

       

       

       

       

       

       

       


      同步練習(xí)冊(cè)答案