題目列表(包括答案和解析)
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1) 求證:A1C⊥平面BCDE;
(2) 若M是A1D的中點,求CM與平面A1BE所成角的大小;
(3) 線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由
【解析】(1)∵DE∥BC∴∴∴∴又∵∴
(2)如圖,以C為坐標(biāo)原點,建立空間直角坐標(biāo)系C-xyz,
則
設(shè)平面的法向量為,則,又,,所以,令,則,所以,
設(shè)CM與平面所成角為。因為,
所以
所以CM與平面所成角為。
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
(09年丹陽高級中學(xué)一摸)(15分)已知數(shù)列中,且點在直線上。
(1)求數(shù)列的通項公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項和。試問:是否存在關(guān)于的整式,使得
對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com