當(dāng)為偶數(shù)時.一方面有 . 查看更多

 

題目列表(包括答案和解析)

如圖,已知圓軸負(fù)半軸的交點(diǎn)為. 由點(diǎn)出發(fā)的射線的斜率為. 射線與圓相交于另一點(diǎn)

(1)當(dāng)時,試用表示點(diǎn)的坐標(biāo);

(2)當(dāng)時,求證:“射線的斜率為有理數(shù)”是“點(diǎn)為單位圓上的有理點(diǎn)”的充要條件;(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個有理數(shù)可以表示為,其中、均為整數(shù)且、互質(zhì))

(3)定義:實半軸長、虛半軸長和半焦距都是正整數(shù)的雙曲線為“整勾股雙曲線”.

當(dāng)為有理數(shù)且時,試證明:一定能構(gòu)造偶數(shù)個“整勾股雙曲線”(規(guī)定:實軸長和虛軸長都對應(yīng)相等的雙曲線為同一個雙曲線),它的實半軸長、虛半軸長和半焦距的長恰可由點(diǎn)的橫坐標(biāo)、縱坐標(biāo)和半徑的數(shù)值構(gòu)成. 說明你的理由并請嘗試給出構(gòu)造方法.

查看答案和解析>>

對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個點(diǎn)的正方體玩具),記出現(xiàn)向上的點(diǎn)數(shù)分別為,如果是偶數(shù),則把乘以2后再減去2;如果是奇數(shù),則把除以2后再加上2,這樣就可得到一個新的實數(shù),對仍按上述方法進(jìn)行一次操作,又得到一個新的實數(shù).當(dāng)時,甲獲勝,否則乙獲勝.若甲獲勝的概率為,則的值不可能是

A.0                B.2                C.3                D.4

 

查看答案和解析>>

對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個點(diǎn)的正方體玩具),記出現(xiàn)向上的點(diǎn)數(shù)分別為,如果是偶數(shù),則把乘以2后再減去2;如果是奇數(shù),則把除以2后再加上2,這樣就可得到一個新的實數(shù),對仍按上述方法進(jìn)行一次操作,又得到一個新的實數(shù).當(dāng)時,甲獲勝,否則乙獲勝.若甲獲勝的概率為,則的值不可能是

A.0B.2C.3D.4

查看答案和解析>>

對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個點(diǎn)的正方體玩具),記出現(xiàn)向上的點(diǎn)數(shù)分別為,如果是偶數(shù),則把乘以2后再減去2;如果是奇數(shù),則把除以2后再加上2,這樣就可得到一個新的實數(shù),對仍按上述方法進(jìn)行一次操作,又得到一個新的實數(shù).當(dāng)時,甲獲勝,否則乙獲勝.若甲獲勝的概率為,則的值不可能是
A.0B.2C.3D.4

查看答案和解析>>

對于給定的實數(shù)a1,按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個點(diǎn)的正方體玩具),記出現(xiàn)向上的點(diǎn)數(shù)分別為m、n,如果m+n是偶數(shù),則把a(bǔ)1乘以2后再減去2;如果m+n是奇數(shù),則把a(bǔ)1除以2后再加上2,這樣就可得到一個新的實數(shù)a2,對a2仍按上述方法進(jìn)行一次操作,又得到一個新的實數(shù)a3.當(dāng)a3>a1時,甲獲勝,否則乙獲勝.若甲獲勝的概率為
3
4
,則a1的值不可能是( 。

查看答案和解析>>


同步練習(xí)冊答案