解:(Ⅰ)連結.交于點.連結. 查看更多

 

題目列表(包括答案和解析)

(選修4—1幾何證明選講)已知:直線AB過圓心O,交⊙O于AB,直線AF交⊙O于F(不與B重合),直線l與⊙O相切于C,交AB于E,且與AF垂直,垂足為G,連結AC

求證:(1)   (2)AC2=AE·AF

23(選修4—4坐標系與參數(shù)方程選講)以直角坐標系的原點O為極點,軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線經(jīng)過點P(1,1),傾斜角

(I)寫出直線參數(shù)方程;

(II)設與圓相交于兩點A、B,求點P到A、B兩點的距離之積.

24.選修4-5:不等式選講

設函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ),使,求實數(shù)的取值范圍.

查看答案和解析>>

如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(-4,0),點P在射線AB上運動,連結CP與y軸交于點D,連結BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設DE=x,DF=y.請求出y關于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標:如果不存在,請說明理由.

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線兩點,求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去)

與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以,

第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點,所以點在定直線

第三問中,設直線,代入結合韋達定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去).     …………………(2分)

與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點,所以點在定直線上.…(2分)

(Ⅲ)設直線,代入,  ……)得,                 ……………………………     (2分)

的面積范圍是

 

查看答案和解析>>

三棱柱中,側棱與底面垂直,,分別是的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求三棱錐的體積.

【解析】第一問利連結,,∵M,N是AB,的中點∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形是正方形.∴.∴.連結,

,又N中的中點,∴

相交于點C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又.得到結論。

⑴連結,,∵M,N是AB,的中點∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,

∴四邊形是正方形.∴

.連結,

,又N中的中點,∴

相交于點C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又

 

查看答案和解析>>

 (選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是⊙的直徑,是⊙上的兩點,

過點作⊙的切線FD的延長線于點.連結

于點.

    求證:.

 

B. 選修4-2:矩陣與變換

求矩陣的特征值及對應的特征向量.

 

C. 選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,直線的參數(shù)方程是為參數(shù)).

   (1)將曲線的極坐標方程化為直角坐標方程;

   (2)設直線軸的交點是,是曲線上一動點,求的最大值.

 

D.選修4-5:不等式選講

    設均為正數(shù),且,求證

 

 

 

 

查看答案和解析>>


同步練習冊答案