題目列表(包括答案和解析)
(選修4—1幾何證明選講)已知:直線AB過圓心O,交⊙O于AB,直線AF交⊙O于F(不與B重合),直線l與⊙O相切于C,交AB于E,且與AF垂直,垂足為G,連結AC
求證:(1) (2)AC2=AE·AF
23(選修4—4坐標系與參數(shù)方程選講)以直角坐標系的原點O為極點,軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線經(jīng)過點P(1,1),傾斜角.
(I)寫出直線參數(shù)方程;
(II)設與圓相交于兩點A、B,求點P到A、B兩點的距離之積.
24.選修4-5:不等式選講
設函數(shù).
(Ⅰ)求不等式的解集;
(Ⅱ),使,求實數(shù)的取值范圍.
如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設是上的一動點,以為切點作拋物線的切線,直線交軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為, 直線與軸交點為,連接交拋物線于、兩點,求△的面積的取值范圍.
【解析】第一問中利用圓: 的圓心為,半徑.由題設圓心到直線的距離.
即,解得(舍去)
設與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,
第二問中,由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設,由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為是定點,所以點在定直線
第三問中,設直線,代入得結合韋達定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設圓心到直線的距離.
即,解得(舍去). …………………(2分)
設與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設,由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為是定點,所以點在定直線上.…(2分)
(Ⅲ)設直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
三棱柱中,側棱與底面垂直,,,分別是,的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
【解析】第一問利連結,,∵M,N是AB,的中點∴MN//.
又∵平面,∴MN//平面. ----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形是正方形.∴.∴.連結,.
∴,又N中的中點,∴.
∵與相交于點C,∴MN平面. --------------9分
⑶中由⑵知MN是三棱錐M-的高.在直角中,,
∴MN=.又..得到結論。
⑴連結,,∵M,N是AB,的中點∴MN//.
又∵平面,∴MN//平面. --------4分
⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,
∴四邊形是正方形.∴.
∴.連結,.
∴,又N中的中點,∴.
∵與相交于點C,∴MN平面. --------------9分
⑶由⑵知MN是三棱錐M-的高.在直角中,,
∴MN=.又.
(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,是⊙的直徑,是⊙上的兩點,⊥,
過點作⊙的切線FD交的延長線于點.連結交
于點.
求證:.
B. 選修4-2:矩陣與變換
求矩陣的特征值及對應的特征向量.
C. 選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,直線的參數(shù)方程是(為參數(shù)).
(1)將曲線的極坐標方程化為直角坐標方程;
(2)設直線與軸的交點是,是曲線上一動點,求的最大值.
D.選修4-5:不等式選講
設均為正數(shù),且,求證
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com