21.已知為兩定點.三動點A.P.Q滿足.. 查看更多

 

題目列表(包括答案和解析)

已知不垂直于x軸的動直線l交拋物線于A、B兩點,若A,B兩點滿足AQP=BQP,其中Q(-4,0),原點O為PQ的中點.

①求證A,P,B三點共線;

②當m=2時,是否存在垂直于-軸的直線,使得被以為直徑的圓所截得的弦長為定值,如果存在,求出的方程,如果不存在,請說明理由

 

查看答案和解析>>

已知橢圓方程為,長軸兩端點為A、B,短軸上端點為C.
(1)若橢圓焦點坐標為,點M在橢圓上運動,當△ABM的最大面積為3時,求其橢圓方程;
(2)對于(1)中的橢圓方程,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點P、Q在橢圓上,試問在y軸上是否存在一點T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點T的坐標和定值,如果不存在,說明理由.

查看答案和解析>>

已知橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左右焦點為F1,F(xiàn)2,拋物線C:y2=2px以F2為焦點且與橢圓相交于點M(x1,y1)、N(x2,y2),點M在x軸上方,直線F1M與拋物線C相切.
(1)求拋物線C的方程和點M、N的坐標;
(2)設(shè)A,B是拋物線C上兩動點,如果直線MA,MB與y軸分別交于點P,Q.△MPQ是以MP,MQ為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.

查看答案和解析>>

已知橢圓(a>1)的左右焦點為F1,F(xiàn)2,拋物線C:y2=2px以F2為焦點.
(1)求拋物線C的標準方程;
(2)設(shè)A、B是拋物線C上兩動點,過點M(1,2)的直線MA,MB與y軸交于點P、Q.△MPQ是以MP、MQ為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.

查看答案和解析>>

已知橢圓方程為,長軸兩端點為A、B,短軸上端點為C.
(1)若橢圓焦點坐標為,點M在橢圓上運動,當△ABM的最大面積為3時,求其橢圓方程;
(2)對于(1)中的橢圓方程,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點P、Q在橢圓上,試問在y軸上是否存在一點T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點T的坐標和定值,如果不存在,說明理由.

查看答案和解析>>


同步練習冊答案