C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、選擇題:

1.C  2.A 3 .C  4.A  5.A  6.B  7.A  8.A  9.A  10.A  11.C  12.D

二、填空題:

13.12          14.    15   a= ―3,B=3    16.,①②③④    

⒘⒚同理科

⒙(I)解:設(shè)數(shù)列{}的公比為q,由可得

       解得a1=2,q=4.所以數(shù)列{}的通項(xiàng)公式為…………6分

   (II)解:由,得

       所以數(shù)列{}是首項(xiàng)b1=1,公差d=2的等差數(shù)列.故.

       即數(shù)列{}的前n項(xiàng)和Sn=n2.…………………………………

⒛(I)解:只進(jìn)行兩局比賽,甲就取得勝利的概率為    …………4分

   (II)解:只進(jìn)行兩局比賽,比賽就結(jié)束的概率為:     (III)解:甲取得比賽勝利共有三種情形:

若甲勝乙,甲勝丙,則概率為;

若甲勝乙,甲負(fù)丙,則丙負(fù)乙,甲勝乙,概率為;

若甲負(fù)乙,則乙負(fù)丙,甲勝丙,甲勝乙,概率為

       所以,甲獲勝的概率為 …………

21.  (I)解:由點(diǎn)MBN中點(diǎn),又,

       可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.

       由橢圓定義知,點(diǎn)P的軌跡是以A,B為焦點(diǎn)的橢圓.

       設(shè)橢圓方程為,由2a=4,2c=2,可得a2=4,b2=3.

       可知?jiǎng)狱c(diǎn)P的軌跡方程為…………………………6分

   (II)解:設(shè)點(diǎn)的中點(diǎn)為Q,則,

       ,

       即以PB為直徑的圓的圓心為,半徑為,

       又圓的圓心為O(0,0),半徑r2=2,

       又

       =,故|OQ|=r2r1,即兩圓內(nèi)切.…………………12分

22. 解:(1)

當(dāng)a>0時(shí),遞增;

當(dāng)a<時(shí),遞減…………………………5分

(2)當(dāng)a>0時(shí)

0

+

0

0

+

極大值

極小值

此時(shí),極大值為…………7分

當(dāng)a<0時(shí)

0

0

+

0

極小值

極大值

此時(shí),極大值為…………9分

因?yàn)榫段AB與x軸有公共點(diǎn)

所以

解得……………………12分

 

 

 

 


同步練習(xí)冊(cè)答案