題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一、選擇題:
1.C 2.A 3 .C 4.A 5.A 6.B 7.A 8.A 9.A 10.A 11.C 12.D
二、填空題:
13.12 14.
⒘⒚同理科
⒙(I)解:設(shè)數(shù)列{}的公比為q,由可得
解得a1=2,q=4.所以數(shù)列{}的通項公式為…………6分
(II)解:由,得
所以數(shù)列{}是首項b1=1,公差d=2的等差數(shù)列.故.
即數(shù)列{}的前n項和Sn=n2.…………………………………
⒛(I)解:只進(jìn)行兩局比賽,甲就取得勝利的概率為 …………4分
(II)解:只進(jìn)行兩局比賽,比賽就結(jié)束的概率為: (III)解:甲取得比賽勝利共有三種情形:
若甲勝乙,甲勝丙,則概率為;
若甲勝乙,甲負(fù)丙,則丙負(fù)乙,甲勝乙,概率為;
若甲負(fù)乙,則乙負(fù)丙,甲勝丙,甲勝乙,概率為
所以,甲獲勝的概率為 …………
21. (I)解:由點(diǎn)M是BN中點(diǎn),又,
可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.
由橢圓定義知,點(diǎn)P的軌跡是以A,B為焦點(diǎn)的橢圓.
設(shè)橢圓方程為,由
可知動點(diǎn)P的軌跡方程為…………………………6分
(II)解:設(shè)點(diǎn)的中點(diǎn)為Q,則,
,
即以PB為直徑的圓的圓心為,半徑為,
又圓的圓心為O(0,0),半徑r2=2,
又
=,故|OQ|=r2-r1,即兩圓內(nèi)切.…………………12分
22. 解:(1)
當(dāng)a>0時,遞增;
當(dāng)a<時,遞減…………………………5分
(2)當(dāng)a>0時
0
+
0
-
0
+
增
極大值
減
極小值
增
此時,極大值為…………7分
當(dāng)a<0時
0
-
0
+
0
-
減
極小值
增
極大值
減
此時,極大值為…………9分
因為線段AB與x軸有公共點(diǎn)
所以
解得……………………12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com