已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

一、選擇題:

1.C  2.A 3 .C  4.A  5.A  6.B  7.A  8.A  9.A  10.A  11.C  12.D

二、填空題:

13.12          14.    15   a= ―3,B=3    16.,①②③④    

⒘⒚同理科

⒙(I)解:設(shè)數(shù)列{}的公比為q,由可得

       解得a1=2,q=4.所以數(shù)列{}的通項(xiàng)公式為…………6分

   (II)解:由,得

       所以數(shù)列{}是首項(xiàng)b1=1,公差d=2的等差數(shù)列.故.

       即數(shù)列{}的前n項(xiàng)和Sn=n2.…………………………………

⒛(I)解:只進(jìn)行兩局比賽,甲就取得勝利的概率為    …………4分

   (II)解:只進(jìn)行兩局比賽,比賽就結(jié)束的概率為:     (III)解:甲取得比賽勝利共有三種情形:

若甲勝乙,甲勝丙,則概率為

若甲勝乙,甲負(fù)丙,則丙負(fù)乙,甲勝乙,概率為

若甲負(fù)乙,則乙負(fù)丙,甲勝丙,甲勝乙,概率為

       所以,甲獲勝的概率為 …………

21.  (I)解:由點(diǎn)MBN中點(diǎn),又,

       可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.

       由橢圓定義知,點(diǎn)P的軌跡是以AB為焦點(diǎn)的橢圓.

       設(shè)橢圓方程為,由2a=4,2c=2,可得a2=4,b2=3.

       可知?jiǎng)狱c(diǎn)P的軌跡方程為…………………………6分

   (II)解:設(shè)點(diǎn)的中點(diǎn)為Q,則,

      

       即以PB為直徑的圓的圓心為,半徑為

       又圓的圓心為O(0,0),半徑r2=2,

       又

       =,故|OQ|=r2r1,即兩圓內(nèi)切.…………………12分

22. 解:(1)

當(dāng)a>0時(shí),遞增;

當(dāng)a<時(shí),遞減…………………………5分

(2)當(dāng)a>0時(shí)

0

+

0

0

+

極大值

極小值

此時(shí),極大值為…………7分

當(dāng)a<0時(shí)

0

0

+

0

極小值

極大值

此時(shí),極大值為…………9分

因?yàn)榫段AB與x軸有公共點(diǎn)

所以

解得……………………12分

 

 

 

 


同步練習(xí)冊(cè)答案