題目列表(包括答案和解析)
四、選考題:(本小題滿分10分)
請考生在第22、23、題中任選一題做答,如果多做,則按所做的第一題記分.
22.選修4-4:坐標系與參數(shù)方程
已知圓O1和圓O2的極坐標方程分別為
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過兩圓交點的直線的極坐標方程。
四、選考題:(本小題滿分10分)
請考生在第22、23、題中任選一題做答,如果多做,則按所做的第一題記分.
22.選修4-4:坐標系與參數(shù)方程
已知圓O1和圓O2的極坐標方程分別為
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過兩圓交點的直線的極坐標方程。
選作題,請考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分,每道題滿分10分)
22、選修4—1:幾何證明選講
如圖,△ABC的角平分線AD的延長線交于的外按圓于點E。
(I)證明:△ABC∽△ADC
(II)若△ABC的面積為AD·AE,求∠BAC的大小。
23、選修4—4:坐標系與參數(shù)方程
已知半圓C的參數(shù)方程為參數(shù)且(0≤≤)
P為半圓C上一點,A(1,0)O為坐標原點,點M在射線OP上,線段OM與 的長度均為。
(I)求以O(shè)為極點,軸為正半軸為極軸建立極坐標系求點M的極坐標。
(II)求直線AM的參數(shù)方程。
24、選修4—5,不等式選講
已知函數(shù)
(I)若不等式的解集為求a值。
(II)在(I) 條件下,若對一切實數(shù)恒成立,求實數(shù)m的取值范圍。
[選做題]本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答。若多做,則按作答的前兩題評分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。
A. 選修4-1:幾何證明選講
AB是圓O的直徑,D為圓O上一點,過D作圓O的切線交AB延長線于點C,若DA=DC,求證:AB=2BC。
B. 選修4-2:矩陣與變換
在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1)。設(shè)k為非零實數(shù),矩陣M=,N=,點A、B、C在矩陣MN對應(yīng)的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值。
C. 選修4-4:坐標系與參數(shù)方程
在極坐標系中,已知圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實數(shù)a的值。
D. 選修4-5:不等式選講
設(shè)a、b是非負實數(shù),求證:。
[必做題]第22題、第23題,每題10分,共計20分。請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟。
一、填空
1、;2、;3、;4、;5、;6、5;7、;8、;9、;
10、;11、;12、;13、;14、。
二、解答題
1`5、(本題滿分14分)
解:(1)(設(shè)“該隊員只屬于一支球隊的”為事件A,則事件A的概率
(2)設(shè)“該隊員最多屬于兩支球隊的”為事件B,則事件B的概率為
答:(略)
16、(本題滿分14分)
解:(1)連,四邊形菱形 ,
為的中點,
又
,
(2)當時,使得,連交于,交于,則為 的中點,又為邊上中線,為正三角形的中心,令菱形的邊長為,則,。
即: 。
17、解:
(1)
,
在區(qū)間上的值域為
(2) ,
,
18、解:(1)依題意,得:,。
拋物線標準方程為:
(2)設(shè)圓心的坐標為,半徑為。
圓心在軸上截得的弦長為
圓心的方程為:
從而變?yōu)椋?sub> ①
對于任意的,方程①均成立。
故有: 解得:
所以,圓過定點(2,0)。
19、解(1)當時,
令 得 所以切點為(1,2),切線的斜率為1,
所以曲線在處的切線方程為:。
(2)①當時,,
,恒成立。 在上增函數(shù)。
故當時,
② 當時,,
()
(i)當即時,在時為正數(shù),所以在區(qū)間上為增函數(shù)。故當時,,且此時
(ii)當,即時,在時為負數(shù),在間 時為正數(shù)。所以在區(qū)間上為減函數(shù),在上為增函數(shù)
故當時,,且此時
(iii)當;即 時,在時為負數(shù),所以在區(qū)間[1,e]上為減函數(shù),故當時,。
綜上所述,當時,在時和時的最小值都是。
所以此時的最小值為;當時,在時的最小值為
,而,
所以此時的最小值為。
當時,在時最小值為,在時的最小值為,
而,所以此時的最小值為
所以函數(shù)的最小值為
20、解:(1)設(shè)數(shù)列的公差為,則,,
依題得:,對恒成立。
即:,對恒成立。
所以,即:或
,故的值為2。
(2)
所以,
① 當為奇數(shù),且時,。
相乘得所以 當也符合。
② 當為偶數(shù),且時,,
相乘得所以
,所以 。因此 ,當時也符合。
所以數(shù)列的通項公式為。
當為偶數(shù)時,
當為奇數(shù)時,為偶數(shù),
所以
南京市2009屆高三第一次調(diào)研試
數(shù)學附加題參考答案
21、選做題
.選修:幾何證明選講
證明:因為切⊙O于點,所以
因為,所以
又A、B、C、D四點共圓,所以 所以
又,所以∽
所以 即
所以 即:
B.選修4-2:矩陣與變換
解:由題設(shè)得,設(shè)是直線上任意一點,
點在矩陣對應(yīng)的變換作用下變?yōu)?sub>,
則有, 即 ,所以
因為點在直線上,從而,即:
所以曲線的方程為
C.選修4-4;坐標系與參數(shù)方程
解: 直線的參數(shù)方程為 為參數(shù))故直線的普通方程為
因為為橢圓上任意點,故可設(shè)其中。
因此點到直線的距離是
所以當,時,取得最大值。
D.選修4-5:不等式選講
證明:,所以
必做題:第22題、第23題每題10分,共20分。
22、解:(1)設(shè)圓的半徑為。
因為圓與圓,所以
所以,即:
所以點的軌跡是以為焦點的橢圓且設(shè)橢圓方程為其中 ,所以
所以曲線的方程
(2)因為直線過橢圓的中心,由橢圓的對稱性可知,
因為,所以。
不妨設(shè)點在軸上方,則。
所以,,即:點的坐標為或
所以直線的斜率為,故所求直線方和程為
23、(1)當
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com