⑵ 平面平面.學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

平面向量ab的夾角為60??,a=(2,0),|b|=1,則|a+2b|=                 (    )[來源:學(xué)科網(wǎng)]

       A.                 B.2                C.4                      D.12

查看答案和解析>>

平面直角坐標(biāo)系O—xy中,(其中i、j分別為x軸,y軸正方向上的 單位向量).有下列命題:[來源:學(xué)|科|網(wǎng)]

①若,則的最小值為3;

②若x>0,y>0且,則的最小值為;[來源:學(xué)。科。網(wǎng)]

③若,則的最大值為3;

④設(shè),若(其中,若向量,則動點P的軌跡是拋物線.

其中你認(rèn)為正確的所有命題的序號為______________

 

查看答案和解析>>

平面區(qū)域學(xué)科,若向區(qū)域內(nèi)隨機投一點,則點落入?yún)^(qū)域的概率為          .高考資源網(wǎng)

查看答案和解析>>

以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為
(1)若把曲線上的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到曲線,[來源:學(xué)|科|網(wǎng)]
求曲線在直角坐標(biāo)系下的方程
(2)在第(1)問的條件下,判斷曲線與直線的位置關(guān)系,并說明理由;

查看答案和解析>>

以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為

(1)若把曲線上的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到曲線,[來源:學(xué)|科|網(wǎng)]

求曲線在直角坐標(biāo)系下的方程

(2)在第(1)問的條件下,判斷曲線與直線的位置關(guān)系,并說明理由;

 

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點,又中點。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵,     (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴, 。

        ∴                (10分)

         

             (13分)

          (當(dāng)時取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線的斜率中點坐標(biāo)為 ,

        ∴直線方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時 ,點到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個點使 △的面積為  .  (14分)

18[解] (1)乙方的實際年利潤為:  .   (5分)

當(dāng)時,取得最大值.

      所以乙方取得最大年利潤的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時,;當(dāng)時,,所以時,取得最大值.

    因此甲方向乙方要求賠付價格 (元/噸)時,獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時, ,∴為減函數(shù);

   當(dāng)時,,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時,

       ∴                                                      (2分)

        ②當(dāng)時,

       ∴                                                 (4分)

        ③當(dāng)時,

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點,則

                                             (4分)

       化簡得:   為求。                                (6分)

       ⑵設(shè)

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊答案