(1)求直線的方程,學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知曲線上任意一點到點的距離比它到直線的距離小1.

(Ⅰ)求曲線的方程;

(Ⅱ)直線與曲線相交于兩點,設(shè)直線的斜率分別為

求證:為定值.[來源:學(xué),科,網(wǎng)Z,X,X,K]

 

查看答案和解析>>

以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為
(1)若把曲線上的橫坐標縮短為原來的,縱坐標不變,得到曲線,[來源:學(xué)|科|網(wǎng)]
求曲線在直角坐標系下的方程
(2)在第(1)問的條件下,判斷曲線與直線的位置關(guān)系,并說明理由;

查看答案和解析>>

以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為

(1)若把曲線上的橫坐標縮短為原來的,縱坐標不變,得到曲線,[來源:學(xué)|科|網(wǎng)]

求曲線在直角坐標系下的方程

(2)在第(1)問的條件下,判斷曲線與直線的位置關(guān)系,并說明理由;

 

查看答案和解析>>

(本小題滿分12分)學(xué)科網(wǎng)已知的三邊長成等差數(shù)列,若點的坐標分別為.(1)求頂點的軌跡的方程;學(xué)科網(wǎng)(2)若線段的延長線交軌跡于點,當時求線段的垂直平分線軸交點的橫坐標的取值范圍.學(xué)科網(wǎng)

學(xué)科網(wǎng)

查看答案和解析>>

(本題滿分10分)已知m>1,直線,橢圓,分別為橢圓的左、右焦點.

(Ⅰ)當直線過右焦點時,求直線的方程;[來源:學(xué)§科§網(wǎng)]

(Ⅱ)設(shè)直線與橢圓交于兩點,,的重心分別為.若原點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.

 

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點,又中點。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵,     (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴ 。

        ∴                (10分)

         

             (13分)

          (當時取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線的斜率 ,中點坐標為 ,

        ∴直線方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當△面積為時 ,點到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個點使 △的面積為  .  (14分)

18[解] (1)乙方的實際年利潤為:  .   (5分)

,

時,取得最大值.

      所以乙方取得最大年利潤的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當時,;當時,,所以時,取得最大值.

    因此甲方向乙方要求賠付價格 (元/噸)時,獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當時, ,∴為減函數(shù);

   當時,,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當時,

       ∴                                                      (2分)

        ②當時,

       ∴                                                 (4分)

        ③當時,

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點,則

                                             (4分)

       化簡得:   為求。                                (6分)

       ⑵設(shè),

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習冊答案