23.已知兩曲線(xiàn)...(1)求兩曲線(xiàn)的交點(diǎn)坐標(biāo), 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)已知雙曲線(xiàn),焦點(diǎn)F2到漸近線(xiàn)的距離為,兩條準(zhǔn)線(xiàn)之間的距離為1。   (I)求此雙曲線(xiàn)的方程;   (II)過(guò)雙曲線(xiàn)焦點(diǎn)F1的直線(xiàn)與雙曲線(xiàn)的兩支分別相交于A、B兩點(diǎn),過(guò)焦點(diǎn)F2且與AB平行的直線(xiàn)與雙曲線(xiàn)分別相交于C、D兩點(diǎn),若A、B、C、D這四點(diǎn)依次構(gòu)成平行四邊形ABCD,且,求直線(xiàn)AB的方程。

查看答案和解析>>

(本小題滿(mǎn)分12分)已知雙曲線(xiàn),焦點(diǎn)F2到漸近線(xiàn)的距離為,兩條準(zhǔn)線(xiàn)之間的距離為1。  (I)求此雙曲線(xiàn)的方程;  (II)過(guò)雙曲線(xiàn)焦點(diǎn)F1的直線(xiàn)與雙曲線(xiàn)的兩支分別相交于A、B兩點(diǎn),過(guò)焦點(diǎn)F2且與AB平行的直線(xiàn)與雙曲線(xiàn)分別相交于C、D兩點(diǎn),若A、B、C、D這四點(diǎn)依次構(gòu)成平行四邊形ABCD,且,求直線(xiàn)AB的方程。

查看答案和解析>>

(本小題滿(mǎn)分12分)

已知兩點(diǎn)滿(mǎn)足條件的動(dòng)點(diǎn)P的軌跡是曲線(xiàn)E,直線(xiàn) l y= kx-1與曲線(xiàn)E交于A、B兩個(gè)不同點(diǎn)。

(1)求k的取值范圍;(2)如果求直線(xiàn)l的方程.

查看答案和解析>>

(本小題滿(mǎn)分12分)
已知雙曲線(xiàn)的離心率為2,焦點(diǎn)到漸近線(xiàn)的距離等于,過(guò)右焦點(diǎn)的直線(xiàn)
交雙曲線(xiàn)于、兩點(diǎn),為左焦點(diǎn),
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)若的面積等于,求直線(xiàn)的方程.

查看答案和解析>>

(本小題滿(mǎn)分12分)

 已知雙曲線(xiàn)的離心率為,且過(guò)點(diǎn)P().

 (1)求雙曲線(xiàn)C的方程;

 (2)若直線(xiàn)與雙曲線(xiàn)C恒有兩個(gè)不同的交點(diǎn)A,B,且  

(其中O為原點(diǎn)),求k的取值范圍.

 

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點(diǎn),又中點(diǎn)。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵,     (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵ (8分)

        ∵,∴,

        ∴                (10分)

         

             (13分)

          (當(dāng)時(shí)取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線(xiàn)的斜率中點(diǎn)坐標(biāo)為

        ∴直線(xiàn)方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時(shí) ,點(diǎn)到直線(xiàn)的距離為 。                   (12分)

 又圓心到直線(xiàn)的距離為,圓的半徑   

∴圓上共有兩個(gè)點(diǎn)使 △的面積為  .  (14分)

18[解] (1)乙方的實(shí)際年利潤(rùn)為:  .   (5分)

,

當(dāng)時(shí),取得最大值.

      所以乙方取得最大年利潤(rùn)的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.

    因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線(xiàn)的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時(shí), ,∴為減函數(shù);

   當(dāng)時(shí),,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時(shí),

       ∴                                                      (2分)

        ②當(dāng)時(shí),

       ∴                                                 (4分)

        ③當(dāng)時(shí),

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點(diǎn),則

                                             (4分)

       化簡(jiǎn)得:   為求。                                (6分)

       ⑵設(shè),

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊(cè)答案