故函數(shù)在上是增函數(shù).-------------------------4分 查看更多

 

題目列表(包括答案和解析)

把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

(1)求函數(shù)的解析式; (2)若,證明:.

【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調(diào)遞增.……10分

,即

 

查看答案和解析>>

某市投資甲、乙兩個工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列,的通項(xiàng)公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.

【解析】本試題主要考查數(shù)列的通項(xiàng)公式的運(yùn)用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實(shí)際問題,其步驟是建立數(shù)列模型,進(jìn)行計(jì)算得出結(jié)果,再反饋到實(shí)際中去解決問題.由于比較兩個工廠的產(chǎn)量時兩個函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時作表格比較簡捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時,;

當(dāng)時,;

當(dāng)b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>


同步練習(xí)冊答案