題目列表(包括答案和解析)
(本小題滿分12分)
過點Q 作圓C:的切線,切點為D,且QD=4
(1)求的值
(2)設P是圓C上位于第一象限內的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設,求的最小值(O為坐標原點)
(本小題滿分12分)
如圖,A,B,C,D都在同一個與水平面垂直的平面內,B,D為兩島上的兩座燈塔的塔頂。測量船于水面A處測得B點和D點的仰角分別為,,于水面C處測得B點和D點的仰角均為,AC=0.1km。試探究圖中B,D間距離與另外哪兩點間距離相等,然后求B,D的距離(計算結果精確到0.01km,1.414,2.449)
(本小題滿分12分)
已知平面區(qū)域被圓C及其內部所覆蓋.
(1)當圓C的面積最小時,求圓C的方程;
(2)若斜率為1的直線l與(1)中的圓C交于不同的兩點A、B,且滿足CA⊥CB,求直線l的方程.
(本小題滿分12分)有A、B、C、D、E五位工人參加技能競賽培訓.現(xiàn)分別從A、B二人在培訓期間參加的若干次預賽成績中隨機抽取8次.用莖葉圖表示這兩組數(shù)據(jù)如下:
(1)現(xiàn)要從A、B中選派一人參加技能競賽,從平均狀況和方差的角度考慮,你認為派哪位工人參加合適?請說明理由;
(2)若從參加培訓的5位工人中選2人參加技能競賽,求A、B二人中至少有一人參加技能競賽的概率.
(本小題滿分12分)
已知函數(shù) (b、c為常數(shù)).
(1) 若在和處取得極值,試求b,c的值;
(1) 若在、上單調遞增,且在上單調遞減,又滿足,求證:.
理科部分
一、選擇題(本大題共12小題,每小題5分,共60分)
BAACA CDBCD AC
二、填空題(本大題共4小題,每小題4分,共16分)
13.25 14. 15.8 16.
三、解答題
17.(本小題滿分12分)
解:(I)
(Ⅱ)
18.(本小題滿分12分)
解:(I)依題意,每場比賽獲得的門票收入數(shù)組成首項為40,公差為10的等差數(shù)列,
設此數(shù)列為,則易知
此次決賽共比賽了5場。
(Ⅱ)由
若要獲得的門票收入不少于390萬元,則至少要比賽6場。
①若比賽共進行了6場,則前5場比賽的比分必為2:3,且第6場比賽為領先一場的
球隊獲勝,其概率
②若比賽共進行了7場,則前6場勝負為3:3,則概率
門票收入不少于390萬元的概率為
19.(本小題滿分12分)
解:方法一(向量法);
(I)證明:以點為原點,棱所
在的直線分別為軸和軸建立空間直角坐標系
(右手系),設,則,
又已知,可求得以下各點的
坐標為
(Ⅱ)已知是直四棱柱,
,又由(I)知,
即是平面的法向量。
設平面的法向量為則且
由圖形可知,二面角的平面為銳角,
二面角的大小為
方法二(綜合法):
(I)是直四棱柱,
(Ⅱ)在內,過點作的垂線, 交點,連結。
由(I)知
垂線定理知,
就是二面角的平面角。
同(I)一樣,不妨設
在內,
二面角的大小為
20.(本小題滿分12分)
解:(I)
令
顯然當
(Ⅱ)①當時, 函數(shù)在上是單調減函數(shù),
在上的最小值 ,
又
綜上,對任意
本問也可以這樣證:
(Ⅱ)函數(shù)在上單調遞增,在和上單調遞減,
對任意
21.(本小題滿分12分)
解:(I)設橢圓的方程為橢圓方程化為將點代入,解得,橢圓的方程為
(Ⅱ)顯然,直線存在斜率(否則不滿足題意,5分),設其斜率為,則直線的方程為。代入橢圓的方程,消去并整理得
由方程判別式, 得 ①
設兩點的坐標為,則由韋達定理得
將上面使用韋達定理所得的結果代入,并去分
母整理(注意在方程兩邊先約去9可以簡化計算)得
檢驗①式,均符合;再檢驗當時,直線是否與橢圓相交于左右兩個頂點,顯然直線過橢圓的右頂點。
不滿足題意,舍去
直線的方程為
22.(本小題滿分14分)
解:(I)方法一:當時,顯然由已知可得成立。
假設時成立,即
則當時,根據(jù)題意有
當時,成立。
根據(jù)數(shù)學歸納法可知,對任意,成立
方法二:
……,, 將這個等式累乘(相乘),得
將代入得
檢驗當時,上式也成立,
方法三:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com