20.設(shè)數(shù)列 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=2且a1,a5,a13成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn=( 。
A、
n2
4
+
7n
4
B、
n2
3
+
5n
3
C、
n2
2
+
3n
4
D、n2+n

查看答案和解析>>

設(shè)數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=
n
3
,n∈N*
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

設(shè)數(shù)列{an}的通項(xiàng)公式為an=pn+q(n∈N*,P>0).?dāng)?shù)列{bn}定義如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3;
(Ⅱ)若p=2,q=-1,求數(shù)列{bm}的前2m項(xiàng)和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)數(shù)列{an}是等比數(shù)列,a1=C2m+33m•Am-21,公比q是(x+
14x2
)4
的展開(kāi)式中的第二項(xiàng)(按x的降冪排列).
(1)用n,x表示通項(xiàng)an與前n項(xiàng)和Sn;
(2)若An=Cn1S1+Cn2S2+…+CnnSn,用n,x表示An

查看答案和解析>>

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知ban-2n=(b-1)Sn
(Ⅰ)證明:當(dāng)b=2時(shí),{an-n•2n-1}是等比數(shù)列;
(Ⅱ)求{an}的通項(xiàng)公式.

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng),

           12分

18.解:(1)依題意,甲答對(duì)主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對(duì)試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因?yàn)槭录嗀、B相互獨(dú)立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個(gè)考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過(guò)點(diǎn)E作EG交CF于G,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6fb4da3eeecf7f946ae49f5ccaba0f78.zip/74664/山東省聊城市2009年高三年級(jí)高考模擬(二)數(shù)學(xué)試題(理科).files/image232.gif" >平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)過(guò)點(diǎn)B作交FE的延長(zhǎng)線于H,

       連結(jié)AH,BH。

       由平面,

       所以為二面角A―EF―C的平面角

      

       又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6fb4da3eeecf7f946ae49f5ccaba0f78.zip/74664/山東省聊城市2009年高三年級(jí)高考模擬(二)數(shù)學(xué)試題(理科).files/image250.gif" >

       所以CF=4,從而B(niǎo)E=CG=3。

       于是    10分

       在

       則,

       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6fb4da3eeecf7f946ae49f5ccaba0f78.zip/74664/山東省聊城市2009年高三年級(jí)高考模擬(二)數(shù)學(xué)試題(理科).files/image258.gif" >

                 解法二:(1)如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),

                 建立空間直角坐標(biāo)系

                 設(shè)

                 則

                

                 于是

           

           

           

           

          20.解:(1)當(dāng)時(shí),由已知得

                

                 同理,可解得   4分

             (2)解法一:由題設(shè)

                 當(dāng)

                 代入上式,得     (*) 6分

                 由(1)可得

                 由(*)式可得

                 由此猜想:   8分

                 證明:①當(dāng)時(shí),結(jié)論成立。

                 ②假設(shè)當(dāng)時(shí)結(jié)論成立,

                 即

                 那么,由(*)得

                

                 所以當(dāng)時(shí)結(jié)論也成立,

                 根據(jù)①和②可知,

                 對(duì)所有正整數(shù)n都成立。

                 因   12分

                 解法二:由題設(shè)

                 當(dāng)

                 代入上式,得   6分

                

                

                 -1的等差數(shù)列,

                

                    12分

          21.解:(1)由橢圓C的離心率

                 得,其中,

                 橢圓C的左、右焦點(diǎn)分別為

                 又點(diǎn)F2在線段PF1的中垂線上

                

                 解得

                    4分

             (2)由題意,知直線MN存在斜率,設(shè)其方程為

                 由

                 消去

                 設(shè)

                 則

                 且   8分

                 由已知,

                 得

                 化簡(jiǎn),得     10分

                

                 整理得

          * 直線MN的方程為,     

                 因此直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

          22.解:   2分

             (1)由已知,得上恒成立,

                 即上恒成立

                 又當(dāng)

                    4分

             (2)當(dāng)時(shí),

                 在(1,2)上恒成立,

                 這時(shí)在[1,2]上為增函數(shù)

                  

                 當(dāng)

                 在(1,2)上恒成立,

                 這時(shí)在[1,2]上為減函數(shù)

                

                 當(dāng)時(shí),

                 令 

                 又 

                     9分

                 綜上,在[1,2]上的最小值為

                 ①當(dāng)

                 ②當(dāng)時(shí),

                 ③當(dāng)   10分

             (3)由(1),知函數(shù)上為增函數(shù),

                 當(dāng)

                

                 即恒成立    12分

                

                

                

                 恒成立    14分


          同步練習(xí)冊(cè)答案