(2)若是橢圓的一個焦點.且.求橢圓的方程. 查看更多

 

題目列表(包括答案和解析)

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點為F1(-c,0),F(xiàn)2(c,0),M是橢圓上的一點,且滿足
F1M
F2M
=0

(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為5
2
;
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點P(0,-
3
3
)
、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),直線y=k(x-1)經過橢圓C的一個焦點與其相交于點M,N,且點A(1,
3
2
)
在橢圓C上.
(I)求橢圓C的方程;
(II)若線段MN的垂直平分線與x軸相交于點P,問:在x軸上是否存在一個定點Q,使得
|PQ|
|MN|
為定值?若存在,求出點Q的坐標和
|PQ|
|MN|
的值;若不存在,說明理由.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左右兩焦點分別為F1,F(xiàn)2,且離心率e=
6
3

(1)設E是直線y=x+2與橢圓的一個交點,求|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,1),是否存在斜率為k的直線l與(1)中的橢圓交與不同的兩點A,B,使得點N在線段AB的垂直平分線上,若存在,求出直線l在y軸上截距的范圍;若不存在,說明理由.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足
F1M
F2M
=0,點N( 0,3 )到橢圓上的點的最遠距離為5
2

(1)求橢圓C的方程
(2)設斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,P(0,-
3
3
)
;問A、B兩點能否關于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓G:的兩個焦點F1(-c,0)、F2(c,0),M是橢圓上的一點,且滿足

  (Ⅰ)求離心率e的取值范圍;

 (Ⅱ)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為求此時橢圓G的方程;(ⅱ)設斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點的直線對稱?若能,求出k的取值范圍;若不能,請說明理由

查看答案和解析>>


同步練習冊答案